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• Understanding the uncertainty in moment tensor analyses is key to a proper
interpretation of those results

• Earth model errors can cause biases in moment tensor results that basic
statistical tests like the 95% confidence F-test used here will not identify, but a 1-
D model based on a 3-D can help mitigate biases

• Errors are non-Gaussian; thus, standard F-test confidence intervals are
inaccurate especially when realistic noise contaminates observations

• FW inversions provide more accurate, higher confidence results than amplitudes
or FMs, but still can be biased by inaccurate earth models
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We generate synthetic “data” from three different Earth models: a 3-D
heterogenous model based on the Geologic Framework Model of the
Western US (Boyd, 2019) with stochastic perturbations added (“het”), a 1-
D model based on that model (“layered”), and 1-D ak135 (Kennett et al.,
1995) (Figure 1). In all cases, we use the layered model for Green’s
functions. From the Table, there are 72 cases per data Earth model for all 3
data types. The first-motion (FM) and amplitude data (amps) use a grid
search method to find solutions with 10° bins in strike, dip, and rake and
isotropic/DC ratios: -1.0, -0.7, -0.3, 0, 0.3, 0.7, 1.0. The full waveform (FW)
data use a deterministic regularized inversion, solving d = G*m subject to
model smoothness and minimization constraints, for all six unique
components of the time-variable moment tensor (Figure 2). For each of the
216 cases for the amps and FMs, 100 realizations are performed, while for
the FW cases, only 10 realizations are completed per case. Each
realization randomly selects one station within each azimuth and distance
bin (Figure 1c). These bins ensure that each case has a relatively even
distribution of stations around the source. For the “az gap” cases, two of
the five azimuth bins have no stations within them at any distance.
Realistic noise is constructed using Karhunen-Loève expansion (e.g.,
Preston, 2018) of observed pre-event noise, scaled to match the signal-to-
noise (SNR) for the case.

Quantifying uncertainty in regional-scale seismic moment tensors

One of the primary goals of nonproliferation research is seismic
source characterization. Understanding the uncertainty in moment
tensor analyses is key to a proper interpretation of seismic results.
To evaluate the uncertainty and sensitivity of moment tensors to
various factors, we perform a series of simulations and determine
solutions over combinations of the factors shown below:

L. Preston and A. Darrh, Sandia National Laboratories, Albuquerque, NM, USA

Introduction Method Results

P2.1-443

Figure 1: a) Map of study area with the double-
couple (DC) source mechanism shown at the 
source location, b) 3-D stochastic earth model 
based on the Western US Geologic Framework 
Model, c) Station map color-coded based on 
distance and azimuth bins.

Property N Values

Data type 3 P-wave 1st motions, P-, SV- and SH-amps, FW

Earth model (data) 3 3-D heterogenous, 1-D layered, 1-D ak135

Earth model (GFs) 1 1-D layered

Source Type 3 0/100%, 70/30%, 100/0% iso/DC

Noise level 3 SNR: Inf (no noise), min 2, min 5

Azimuthal Cov. 2 Full, 144° min azimuthal gap

# stations 4 5, 10, 14, 19

Figure 2: a) Example 
amplitude data from the 
het model (“observed”) 
compared to that 
predicted from the layered 
earth model with the true 
source, b) FW inversion fit 
of the same case.

Figure 3: Summary plots of source type on lune plots (Tape and Tape, 2012). a)-c) Grid 
search on source type with color indicating the fraction of statistically equivalent solutions 
with each DC/iso% (colorbar). Star indicates true source type. All three are amplitude data 
in az gap, no noise cases: a) ak135 b) layered, c) het. d)-e) Full waveform solution source 
types for all 10 realizations (red dots) for d) het, no az gap, SNR 2; e) az gap, no noise.
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Conclusions
• Earth model errors can cause biases in moment tensor results that basic 

statistical tests like the 95% confidence F-test used here will not identify, but 
a 1-D model based on a 3-D can help mitigate biases (Fig. 3a and 4)

• Noise further complicates and increases scatter in results (Fig. 3d & e)
• Errors are non-Gaussian; thus, standard F-test confidence intervals are 

inaccurate especially when realistic noise contaminates observations (Fig. 4)
• Five stations result in much different statistics than 10 or more especially with 

earth model errors
• Having >=10 stations only subtly improves accuracy, error variance, and 

confidence intervals and can actually worsen results in some cases
• FW inversions provide more accurate, higher confidence results than 

amplitudes or FMs, but still can be biased by inaccurate earth models
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Figure 4: Statistics versus number of stations 
colored by case. a)-d) amp data; e) & f) FM, g)-
j) FW. a), b), e) average % of realizations having 
the true model within F-test region. c), d) ,f) 
mean % of the 4D volume that is statistically 
equivalent to the best model. g) & h) log10 of 
the error variance. i) & j) % variance reduction.
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