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We developed Temporal Generative Adversarial Neural Networks for producing quality

multicomponent synthetic seismograms. By representing the data from a group of sensors as a

single hypercomplex number, the network's operations become more expressive and parameter-

efficient. It learns a single transformation on a richer mathematical object, instead of independent

transformations on multiple real-valued channels.
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We developed Hypercomplex (HC) Deep Model

approach to seismic data augmentation and accessed it

with data from 5 DPRK nuclear explosions recorded

globally at the IMS arrays and single 3C stations. To

achieve it, Deep Octonion and Sedenion* Generative

Adversarial Networks were implemented based on 1-

>16 Cayley-Dickson construction, producing highly

diverse data to mitigate the risk of bias in the further

model's training and allowing to learn a broader range of

seismoacoustic records, leading to greater location or

discrimination accuracy and robustness. This innovation

aligns with current research in geometrically-structured

learning and physics-informed neural networks.

Generative Networks, especially HC adversarial branch,

is as an important approach in seismic monitoring, since

the IMS array’s geometrical structure perfectly fits the

HC numbers geometrical structure. They can produce

sufficient number of synthetic waveforms based on

empirical rather than known theoretical approaches.

CTBTO-hosted Expert Technical Analysis Spot Check

Tool, SCT and tentatively ParMT (Moment Tensor

Based Depth Determination) are among the consumers

of the GN’s products.

GNs are also a vital alternative to the known data

augmentation techniques used in Imbalanced Learning

for producing single and multichannel patterns.

Specifically for the 3-component seismic array based

CTBT monitoring, we learned a hypercomplex approach

to seismic data deep learning, like we did before with

the multilinear tensor constructions. By representing the

data from a group of sensors as a single hypercomplex

number (1D to 16D), the network's operations become

more expressive and parameter-efficient. It learns a

single transformation on a richer mathematical object,

instead of independent transformations on multiple real-

valued channels. This acts as a powerful regularizer,

guiding the network to learn physically meaningful

features and mitigating the overfitting that plagues data-

scarce problems.

Generative Neural Networks in Nuclear Test Monitoring

Various nuclear test monitoring techniques require

numerous waveforms and expect good spatial coverage

of seismic source:

Master-Event-based hypocenter determination -

aseismic areas and those lacking IMS sufficient

coverage has no templates. Scarcity of nuclear

explosion records for most test sites is an issue.

Imbalanced Learning – in detection and classification

techniques nuclear explosions is an underrepresented

class. Labeled data is extremely scarce. Need to

minimizing the impact of imbalance - need efficient data

augmentation. Without enough data, the network is

likely to simply overfit to the few examples it has, failing

to generalize to new, unseen events.

Generative Networks, GN – a novel way of producing

realistic, high-quality synthetic metadata and time

series. Low output diversity is an issue. Need to

estimate different GNs, including multidimensional GNs.

This is where a hypercomplex approach offers a

powerful and elegant solution. Instead of relying solely

on the data to discover all the underlying patterns, we

can embed known physical or geometric relationships

directly into the network's architecture. This is a form of

hypercomplex inductive bias, where we bake a

knowledge of the problem into the model itself.
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Comparing generated data of 1D TCCGAN with vanilla and LSTM GAN

A few overlayed 
generated records

Generated records

Input DPR data eigenvalues

Generated 
data 
eigenvalues

VGAN / +LSTM

Data diversity of the fast dense 
vanilla GAN is even higher than 
the diversity of the more 
sophisticated Temporal 
Conditional Convolutional (TCC) 
GAN, but the output is a bit 
noisy. Still it’s insufficient – see 
rapidly vanishing/degrading 
principal components). 
Compare with the DON-related 
slide.

Principal components

TCCGAN

Generator G produces new samples from random noise which appear very 

similar to the real ones after training. It attempts to reproduce the probability 

distribution of real data. A second model called discriminator (D) 

distinguishes between real and fake data. In the end, the G learned so well 

the probability distribution of input data pdata(x) to produce a sample that the 

D is no more able to distinguish it from real ones 

Real and generated 
PSD  similarity 



Quaternion GAN (QGAN): Handles multichannel or 

multidimensional time-series data, leveraging quaternion 

representations to capture dependencies between 

channels.

Multivariate TimeGAN: Extends TimeGAN to handle 

multivariate sequences by jointly learning dependencies 

across multiple time-series.

Multi-Channel RCGAN: A variant of Recurrent 

Conditional GANs adapted for data with multiple 

correlated channels.

Conditional VAE for Multivariate Data: Extends CVAEs 

to deal with multivariate time-series, conditioning on 

cross-channel data.

Multivariate Diffusion Models: Adaptations of diffusion-

based approaches for multichannel time-series with 

complex dependencies.

Spatiotemporal GANs: Typically used for data with 

spatial and temporal characteristics, making them 

suitable for multichannel data that involves 

spatiotemporal dependencies.

Multimodal Transformers: Transformer models adapted 

to learn across multiple time-series simultaneously, 

capturing dependencies between channels.

These models offer a range of approaches to handle both 

simple and complex time-series data structures. For 

multichannel or multidimensional time-series, ensuring 

the models can learn cross-channel relationships is key 

to maintaining fidelity in generated sequences.

The array geometry is projected directly to the octonion

model, and the underlying wavefield related information is

embedded into the GAN loss function related modules.

For the shown above ARCESS IMS array (left), two outer

rings can be described by the single sedenion or two

octonion numbers, and the internal rings by octonions or

quaternion models. SPITS array can be described by the

single octonion + 1 quaternion. Since sedenions have a

Null Divisor Problem (though we also embedded a sanity

check with the depthwise separable convolution), scaling

up to octonions is an option. The overall approach applies

a strong inductive bias by embedding the physical

correlations between sensors directly into the network's

structure. This GINN/PINN would learn to generate

synthetic waveforms that are not only realistic but also

physically plausible given the unique geometry of the

seismic network
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Hypercomplex algebra
Some Multidimensional/Multichannel Time-

Series Generative Models considered
Physics- and Geometry-informed GAN: 

where algebra is mapped to physical array
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The octonions can be thought of as octets (or 8-tuples) 

of real numbers. Every octonion is a real linear 

combination of the unit octonions:

where e0 is the scalar or real element. That is, every 

octonion x can be written in the form

Sedenion is the 16-component number (1 Re and 15 Im)

Quaternion 
multiplication
I2 = J 2 = K 2 = I J K = 
−1,
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Real-valued 

model

Deep octonion networks (DONs) as 

an 8-dimensional extension of Deep 

Network, the Deep Complex Network, 

and the Deep Quaternion Network 

(see Appendices). The main building 

blocks of DONs are octonion 

convolution, octonion batch 

normalization, and octonion weight 

initialization. The complexity of 

implementation holds it from wide 

dissemination so far. Recent tests 

showed better DON convergence, 

less parameters, and higher 

classification accuracy then the real, 

complex, and quaternion networks.

Hypercomplex deep learning offers 

significant benefits over traditional 

real-valued methods for processing 

multidimensional signals. These 

models provide a compact 

representation of multidimensional 

signals, enhancing generalization on 

unknown data.

Convolutional Deep Octonion GAN 

generated data less noisy and more diverse. 
Octonion convolution block

Block diagram on the left is from: Wu, J., et 

al (2020). Deep octonion 

networks. Neurocomputing, 409, 218-232.

Octonion representation is 
much more realistic than the 
real valued
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• Octonions, eight-dimensional mathematical objects, have been explored as potential tools in physics, particularly in the context of the Standard 

Model,  string theory and quantum gravity research as a potential framework for unifying quantum mechanics and gravity. They offer a way to 

describe a pre-spacetime, pre-quantum theory that could lead to a deeper understanding of the universe at its most fundamental 

level. Octonions, unlike real numbers, complex numbers, and quaternions, are non-commutative and non-associative. This non-associativity is 

crucial in the context of quantum gravity, where the very nature of spacetime at the quantum level is expected to be non-commutative.

• Non-commutative geometry, often used in conjunction with octonions, provides a mathematical framework for describing spaces where the 

order of operations matters, potentially mirroring the behavior of spacetime at extremely small scales.

• Penrose's twistor theory has a deep and evolving connection with octonions, particularly in attempts to find a complete theory of quantum 

gravity and to understand the Standard Model. While not an original part of the initial twistor formulation, the non-associative structure of 

octonions has been recognized by Penrose himself as potentially crucial for incorporating deeper symmetries and aspects of quantum gravity, 

with the algebra of bi-twistors providing a representation of split-octonions.

• However, the field is still under development, and many questions remain about the precise role of octonions in quantum gravity.

Why Octonions are Used?

• Algebraic Structure: The unique, non-associative nature of octonions aligns well with the fundamental symmetries and structures observed in 

physics, especially in higher dimensions.

• Unification: The octonions provide a mathematical tool for attempting to unify fundamental forces and particles in a single consistent theory, 

which is a major goal in theoretical physics.

• Geometric Properties: Their connection to geometric algebras and structures like the Fano plane offers new ways to visualize and understand 

the geometry of spacetime and particle interactions.

A Note on Octonions
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Learning in Hypercomplex Domains

Hypercomplex deep learning leverages unique algebraic properties to improve learning operations and capture complex relationships in data.

• Hypercomplex algebras, such as quaternions and octonions, define specific mathematical operations that enhance learning.

• Learning operations in hypercomplex domains are influenced by the non-commutativity and non-associativity of these algebras.

• Hypercomplex layers, such as fully connected and convolutional layers, utilize domain-specific rules for multiplication and convolution.

• The ability to capture inter-channel and intra-channel correlations is enhanced in hypercomplex networks compared to real-valued networks.

Inductive Biases in the Hypercomplex Domains

Inductive biases in hypercomplex deep learning extend traditional biases by incorporating algebraic and geometric properties of hypercomplex 

numbers.

• Inductive biases can be categorized into relational and non-relational assumptions, influencing model generalization.

• Dimensionality bias emphasizes the strong correlations in multidimensional signals, aiding in effective representation and processing.

• Algebraic bias leverages unique properties of hypercomplex algebras to model complex interactions and relationships.

• Geometric bias utilizes the geometric properties of hypercomplex numbers to maintain structural integrity during transformations.
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Hypercomplex Number Systems in Deep Learning

Hypercomplex number systems, such as quaternions, enhance deep learning models by providing scale and viewpoint invariance.

• Hypercomplex systems can encode scale information, aiding in scale-invariant feature extraction.

• They are beneficial for tasks like object detection and image classification due to their perspective-invariant properties.

• Hypercomplex models can capture color invariance, improving model stability against noise and perturbations.

• Equivariance biases, such as rotation and translation, enhance robustness to random rotations and maintain informative 

transformations.
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Convolutional GAN results: generated data from DPRK explosions training set 
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Analyzing results

The confusion matrix shows pretty good degree of accuracy. 1320 true 

signals were tested and 58 of them recognized as noise, while out of 310 

noise signals only 9 were recognized as true. 

To validate the results, the following was applied:

1. Principal component analysis (perform PCA on the features of the real signals 
and project the features of the generated signals to the same PCA subspace)

2. Comparing real and generated PCA latent behavior (eigenvalues slope -
concavity) to estimate the diversity of generated data 

3. Comparing the spectral characteristics of real and generated signals

4. Predicting labels of real signals. For example, train an SVM classifier based on 
the generated signals and then predict whether a real signal is healthy or 
faulty

Signal

Noise

Signal

Noise
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Quaternion Vanilla GAN architecture

• In Quaternion Vanilla GAN architecture, each parameter including inputs, weights and outputs is a quaternion. 

• The generator (green network) takes a quaternion noise signal and generates a batch of quaternion images with four channels. 

• The discriminator tries to distinguish between fake and real quaternion samples exploiting the properties of quaternion algebra (Grassucci, et al, 2022)

This is an alternative way to hypercomplex GAN implementation 
based on image processing. We converted our seismograms to the 
RGB images and learned the network with these images. Then we 
decoded our data and unpacked to the view compatible with the 
input dataset.  

https://www.researchgate.net/profile/Eleonora-Grassucci?_sg%5B0%5D=NyK1R7SAISd8ao1yflGRcqGKT0yR6-lypOJxo0Kn5Vv2lTC_9qPUv8-o5h8vCecGyabKokQ.dvXGfqwGiegndWsE_UklxZtvoDqN_NsFevwJequ3b9o6mKRFllNLR-CkVnxJPW2rq_os9fLw06901ubYqJ0C7g&_sg%5B1%5D=T1o-2YwkSUDyAVXq3YaXPK2wAZ70D-QKpYUqoQz1nOhT6lRXs4S-09RcKWmxByTsDNZaCjQ.v9krSZV617k36JrGaeF3jA9HcOA3ahvr3Pgs1ab93iS0cf0AxS6KhnGgNT0NUckisReXjpcw4ASr5-TtaWRqSg&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24iLCJwb3NpdGlvbiI6InBhZ2VIZWFkZXIifX0


How it works. Case “flowers”. Training process in Quaternion GAN image processing mode.

Epochs 0 to 329. Stages of generation. In the beginning there is mostly an RGB noise, though some forms start 
developing rather soon



How it works. Case “flowers”. Further generation.

Training at 30% of total epoch time (left) and final “faked” flowers at epoch number 

more than 2000 and input image resolution 128x128. This implementation of 

QGAN produces 9 images per one file



Real data. Mining explosions

1536 3-component seismograms were processed following 
the procedure described above for synthetic signal. 

Example ~3 sec window 
taken for processing; 
overlayed components

Example vertical 
record section

Example 
overlayed 3C  
record section
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Input data Z, SN and NE data, views for 6 (up) and 3 (bottom) seconds
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1536 x 3C input seismograms 

converted to RGB images

128 x 3C seismograms in each image

RGB maps of seismic data

Extracted waveform

Inverse transformation: RGB to vector conversion 

and unpacking 



Deep Octonion Networks (DON) and overall 

performance
Deep octonion networks (DONs) as an 8-dimensional extension of DRNs, the DCNs, and the DQNs. 
The main building blocks of DONs are octonion convolution, octonion batch normalization, and 
octonion weight initialization. The complexity of implementation holds it from wide dissemination 
so far. On the left is the octonion convolution. Recent tests showed better DQN convergence, less 
parameters, and higher classification accuracy then the real, complex, and quaternion networks:

Figures are from Wu, J., et al (2020). Deep octonion networks. Neurocomputing, 409, 

218-232.



Generative Neural Networks in Nuclear Test Monitoring

Mikhail Rozhkov1, Enrique Castillo2, Ilya Dricker1,

1 – Instrumental Software Technologies, Inc. (ISTI), Saratoga Springs, NY, USA, 2 – CTBTO, Vienna, Austria

DISCLAIMER (if any) [Arial Regular/ Font Size 8]

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo consequat. Lorem ipsum dolor sit amet, consectetur .

P2.1-601

• We have trained the conventional GAN with the several realizations of the 6 DPRK explosions recorded at different distances by the IMS seismic arrays and single 3-component

stations.

• The generated signals are statistically close to the learning patterns.

• We did the same exercise for more complex structures – Quaternion (Hypercomplex) GAN based on the CNN image processing and showed that this is possible to generate not

only single component seismograms, but a 3-component seismogram based on the 3-component learning patterns, thus utilizing this way the entire volumetric information of the

vector-sensor. More network adjustment required.

• Moving on to the wider perspective, the hypercomplex approach can be extended to the array of seismic channels and to the arrays of 3-component stations aggregating higher

dimensions of hypercomplex algebra with the tensorial generalization.

• This approach can be naturally extended to solving the imbalance problem. Since most machine learning algorithms assume balanced class distributions, target class imbalance

becomes a problem. Training classifiers on imbalanced data naturally bias models towards the majority class. Thus, machine learning applied to the IDC products and waveforms

could be improved by balancing the data and metadata related to the natural and artificial seismoacoustic sources.

Generative Networks and Imbalanced Learning
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Generative Networks in Imbalanced Learning

Waveform augmentation based on GAN (or other generative network) would allow producing sufficient number of nuclear explosion data to infer the

imbalanced dataset from the insufficient dataset as it is now.

Need to use more explosion data:

1. PIDC data and other historical data, inc. analogue digitized

2. IRIS/FDSN

3. National databases, LLNL as a good candidate

Approaches to extend/upgrade feature set

• As in (Hyeongki, et al, 2022), use the imbalance learning with 1D frequency-domain features (e.g. FFT), but using GAN instead of ADASYN

• As in (Rozhkov, 2006), use the features made, e.g. of the wavelet packet decomposition which worked more efficiently than the conventional Fourier-

based spectrogram. Special spectrogram mappings can also be used (Rozhkov, et al, 1998)

• Using GAN for generation of the synthetic seismograms of the minority class (techno-events) thus removing the imbalance problem at all. Or, using this

approach just reduce the imbalance (if huge population is desired to be processed, and the real available seismograms would not be enough to generate

by GAN sufficient number of “fake” explosions of significant variance).



Quantum time-series-augmentation

Quantum generative networks, including Quantum GANs (QuGANs), are being explored for applications in time-series generation and augmentation. While 

specific large-scale applications of quantum generative networks for time-series data are still in development, their potential lies in the ability to exploit 

quantum superposition and entanglement, allowing them to represent and process high-dimensional data more efficiently than classical GANs. This could be 

particularly advantageous in generating or augmenting time-series data with complex dependencies​

Quantum GAN variants

• Fully Quantum GANs

• Hybrid Quantum–Classical GANs

• Tensor-Network-Based GANs

• Quantum Conditional GANs

• Quantum Wasserstein GANs

• Quantum Patch GANs Using Multiple Sub-Generators

• Quantum GANs Using Quantum Fidelity for a Cost Function

• Hamiltonian quantum generative adversarial networks (2024)
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