

Modelling complex P-wave seismograms from the 28th May 1998 Pakistan explosion

Stuart Nippress¹, David Bowers¹ and Benjamin Fernando²

¹ AWE Blacknest, UK, ² Johns Hopkins University, USA

- Teleseismic P-waves from the 28th May 1998 Pakistan nuclear explosion are complex compared to those typically observed from underground explosions.
- We observe a spatial correlation between waveform complexity and take-off angle;
 with the most simple seismograms being recorded at small take-off angles and at seismic stations to the south of the explosion.
- Waveform simulations suggest that the observed complexity can be explained by nearsource geology

Modelling complex P-wave seismograms from the 28th May 1998 Pakistan explosion

Stuart Nippress¹, David Bowers¹ and Benjamin Fernando²

P2.1-554

28th May 1998 Pakistan Nuclear test

- On 28th May 1998 Pakistan announced that it had fired five nuclear explosions, with a combined yield in the range of 30–35 kilotons
- The explosions were fired simultaneously so that individual explosions are indistinguishable
- Using satellite imagery and media sources Albright et al. (1999) identified the entrance to the tunnel and inferred the location of the detonation point (Fig 1.)
- The Reviewed Event Bulletin (REB) of the prototype International Data Centre (pIDC) reported P-times for 63 stations within the International Monitoring System [IMS] (Fig 1.)

earthquake (left). IMS stations with

P-times in the pIDC REB (right).

• The P-waves from the the Pakistan nuclear test are underground nuclear test (Fig. 2)

Numerous measures of waveform complexity of been

previously defined (e.g., Douglas, 1967)

- We define complexity as the root-mean-squared (RMS) amplitude between 2.5 - 5.0 s following the P onset divided by the RMS amplitude within 2.5 s of the P onset
- · Before measuring RMS the waveforms are filtered between 1.0 - 2.5 Hz

Waveform Complexity

- among the most complex ever observed for an
- Waveform complexity (Fig. 3) appears to be:
 - · smaller to the south, but generally there is no clear azimuthal relationship
 - · correlated to take-off angle

· PcP waveforms. with small take-off angles. also appear simple (smaller complexity) compared with P waveforms recorded at the same station (Fig. 4)

Modelling complex P-wave seismograms from the 28th May 1998 Pakistan explosion

Stuart Nippress¹, David Bowers¹ and Benjamin Fernando²

P2.1-554

What could be the Source of the Waveform Complexity?

- 1. Spalling of the free-surface:
 - Usually confined to within 2 s of the P-wave onset (Patton, 1990)
- 2. Near-source topography:
 - Pienkowska et al. (2025) show that waveform complexity due to near-source topography is confined to a few seconds after the P-wave onset
- 3. Upper mantle structure or receiver crustal structure:
 - 6th November 1995 deep earthquake close to the test site (Fig. 1) displays simple P-waves compared to the explosion (Fig. 5) - suggests observed complexity seen for the explosion is not due to path or receiver-side effects
- 4. Variable near-source geology at Pakistan test site:
 - Could this explain the waveform complexity?

Fig. 5: P-seismograms from the Pakistan test (left) and the 6th November 1995 earthquake (right) at GERES and YKA.

Waveform Modelling

- To model the influence of near-source geology on seismic wavefields we use SW4 (Petersson and Sjogreen, 2012)
- Topography is taken from the Shuttle Radar Topography Mission (Farr et al., 2007)
- The source, located in the Cretaceous volcanics (tuff), sits between syenodiorite basement to the north and a ultrabasic intrusion to the south (Fig. 6)
- Synthetic seismic stations 32km equidistant from the source with take-off angles of 0° 25° (Fig. 6)

Fig. 6: Simulation setup. Left: simplified geology. Right: hemisphere of stations (blue circles) 32 km from the shot.

- Run simulations for an explosion source using AK135 with topography and AK135 with topography and nearsurface geology variations
- Calculate RMS amplitude and complexity of the filtered [1 - 2.5 Hz] waveforms decomposed into P-, SV- and SH- ray coordinates (Fig. 7)
- Near-source geology significantly alters the wavefield and complexity

Fig. 7: Right: RMS amplitudes of the P-, SV-,and SH-polarized waveforms. Left: Complexity of the P-polarized waveforms.

 Future work: use technique of Pienkowska et al. (2025) to propagate these wave fields to teleseismic distances - are they still complex?

Summary

- Teleseismic P-waves from the 28th May 1998 Pakistan nuclear explosion are complex compared to those typically observed from underground explosions
- We observe a spatial correlation between waveform complexity and take-off angle; with the most simple seismograms being recorded at small take-off angles and at seismic stations to the south of the explosion
- Waveform simulations suggest that the observed complexity can be explained by near-source geology

