
Yield and Depth of NTS/DPRK Explosions Inverted from

Regional Seismograms Using a New Algorithm

Chandan K. Saikia¹, Andrea Chiang², and Rongmao Zhou¹

¹Air Force Technical Applications Centre, PSFB, Florida, 32925, USA ²Lawrence Livermore National Laboratory, Livermore, California 94451, USA P2.1-391

- Constrains on the formulae used by Minson and Dreger (2008) which are based on Herrmann and Hutchenson (HH,1993)
 - (i) EX, DC and CLVD occur at the same depth
 - (ii) Algorithm starts with the same diagonal **MT** (moment tensor) elements for DC, CLVD and EX sources
 - (iii) Diagonal **GFs** are same for both **CLVD** and **EX** sources: ZDD & RDD for CLVD and ZEX & REX for EX.
 - (iv) Seismic waves propagate to the receivers as an effective source from the point of detonation
- Constraints (ii) & (iii) allow GFs of three sources to add up linearly.
- Essentially, HH formulation is equivalent to adding diagonal $\frac{ZDD}{3}M_{ii}$ for the **CLVD** and $\frac{ZEX}{3}M_{ii}$ for the **EX** to diagonal elements of the **DC** source (Langston, 1981; Saikia & Herrmann, 1986).
- Constraints (i), (ii), (iii) and (iv) are not necessarily true.
- This study assumes the sources to act independently of each other, and constraint (i) is eliminated.
- Seismic waves from DC, CLVD and EX sources propagate and get added at the receiver linearly.

X: This Study

Y: Herrmann & Hutchenson (1993)

