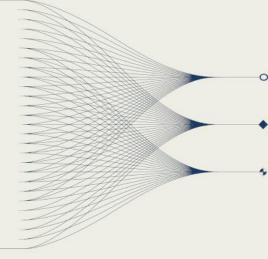


Assessing energy estimation methods for bolides in atmospheric monitoring


Elizabeth A. Silber¹, Christoph Pilger², Iyare Oseghae^{3,*}, Miro Ronac Giannone¹, Patrick Hupe², Vedant Sawal¹

¹Sandia National Laboratories, Albuquerque, NM, 87123; ²Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany; ³University of Texas at San Antonio, San Antonio, Texas, 78249, USA

························· INTRODUCTION AND MAIN RESULTS

Infrasound signals generated by bolides can be used to estimate their energy deposition. Using 362 high-quality infrasound detections from 138 events, we derived new empirical period—yield relations, explicitly accounting for entry geometry and fragmentation processes. These refinements improve yield estimation accuracy, bolide characterization, and atmospheric monitoring.

^{*}work performed during summer internship at Sandia