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AWE Blacknest needs to characterise sources for events of interest. 

There are several event characterisation tools at our disposal:

1. Source depth

2. mb:Ms

3. Regional high-frequency P/S amplitude ratios

4. Waveform modelling

Moment tensor solutions (MTSs) have been viewed as a means of characterising seismic sources (e.g., Jost & 
Herrmann, 1989). 

Project Aims

• Explore moment tensors to characterise seismic sources.

• Compare the capability of publicly available moment tensor inversion codes.

• Understand the trade-off between isotropic (ISO), compensated linear vector dipole (CLVD) and double-couple (DC) 
components in MTSs.

Motivation and Aims
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The International Data Centre (IDC) standard seismic event-
screening measures (mb:Ms, depth) screen out many 
earthquakes, but not all – e.g., mb:Ms screens out ~40% of 
events as earthquakes (Selby et al., 2012). 

Challenges with Characterising Events
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Characterising some events is difficult!

• Chinese explosion identified as an earthquake (e.g., Levshin
& Ritzwoller, 2001).

• Misidentifying local earthquake arrivals as a Pakistan 
explosion (e.g., Jenkins & Sereno, 2001).

• Existing screening criteria difficult to unambiguously determine 
an earthquake (e.g., Lop Nor, Selby et al., 2005).

• Reverse polarity surface waves from underground explosions 
(e.g, Shagan River test site; Rygg, 1979; Cleary, 1980).

• Shallow, dip-slip thrust earthquakes can have explosion-like 
mb:Ms, simple teleseismic waveforms, and generally positive 
first-motion P-waves – they look very explosion like.

Challenges with Characterising Events

Jenkins & Sereno, 2001
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• Six DPRK announced nuclear tests and one 
“collapse” event (Myers et al., 2018).

• Five earthquakes from the International 
Monitoring System (IMS) Reviewed Event 
Bulletin (REB) and Late Event Bulletin (LEB).

• Three of the earthquakes are located within 
10km of the Punggye-ri Nuclear Test Site.

• Two earthquakes located at distances of 150km 
and 200km NW of the test site, in China. 

• mb ~3.4-3.8 for the five earthquakes.

• Synthetic Green’s functions generated using 
wavenumber integration (Herrmann, 2013) with 
the MDJ2 1-D velocity model (Ford et al, 2009).

Dataset
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Dataset

Four global and eight regional 
seismograph networks with 
stations <1500km distance.

Data sources:

• IDC International 
Monitoring System (IMS), 

• Earthscope, International 
Federation of Digital 
Seismograph Networks 
(FDSN) node,

• Southern Methodist 
University (SMU; Park et 
al., 2023) released raw 
data for five arrays along 
the southern side of the 
Korean Demilitarized 
Zone.
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Methods – MTTime - COPYRIGHT

• Time Domain Moment Tensor Inversion in Python (MTTime) is a 

well-documented and computationally cheap method to produce 

full MTSs (Chiang et al., 2021).

• Synthetic displacement seismograms are calculated as a linear 

combination of the basis Green’s functions weighted by the MT.

• Least-squares inversion method with Gauss-Jordan elimination.

• Best fitting MTS when variance reduction (VR) is maximised.

• User can manually shift waveforms to account for an inaccurate 

velocity model. Total time shift (TS) = Δt (user defined, ≤±7s) + 

constant (numerical lag-time, 20s here).

• Noisy components can be removed from the inversion if they are 

clearly fitting incorrectly.

(Chiang et al., 2021)
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Results – DPRK Explosions

• Hypocentre information from Myers et al. (2018) – DPRK 2 shown right.

• Fixed depth (Chiang et al., 2018) of 1km (DPRK 1) or 0.6km (DPRK 2 - 6). 

• Bandpass filter 0.04 - 0.1Hz (DPRK 1 – 2), 0.02 - 0.1Hz (DPRK 3 – 6).

• Large amplitudes on the vertical (Z) and radial (R) components compared 

to the tangential (T). Suggests Rayleigh waves are being generated 

efficiently whereas Love waves are not.

• >=50% positive isotropic component for all explosions – source 

mechanism dominated by volume expansion at the source – i.e. an 

explosion.

• Very good waveform fits (61-88%), largely due to good signal-to-noise 

ratio and good azimuthal coverage.

• Δt consistently +/-1s for most stations, ~6s for HIA and BJT (inaccurate 

velocity model at 1100km distance?).



UK Ministry of Defence © Crown Owned Copyright 2025/AWE Slide 9 of 16 

Results – DPRK “Collapse”

• Fixed depth of 0.6km (Chiang et al., 2018).

• Bandpass filter 0.02 - 0.06Hz.

• Reduced SNR for the surface waves from the “collapse” 
event.

• 54% negative isotropic component, 42% CLVD component 
– source mechanism is consistent with a horizontal closing 
crack.

• Station time-shift (Δt) values are all ~4s smaller than for 
DPRK 6: origin time uncertainty for this “collapse” event? 

• Applying the same Δt’s as for DPRK 6 produces an 
explosion dominated MTS – cycle skipping, origin time 
uncertainty, or problematic inversion method?
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Alternative ‘Collapse’ MTSs

• Using the same Δt values as for the DPRK6 

explosion produces a predominantly double 

couple MTS.

• Waveform fits (VR = 18%) are significantly worse.

• Origin time related to the body wave hypocentre 

(Myers et al., 2018) differs from that of the surface 

waves? 

MTSs are sensitive to the station TSs used
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Alternative ‘Collapse’ MTSs

• Higher frequency Butterworth bandpass filter 

0.04-0.1Hz.

• Δt’s from best-fitting MTS.

• Waveform fit (VR = 46%) lower than the best 

fitting solution, but not unreasonable.

• A positive isotropic (i.e. explosion-dominated) 

MTS is calculated.

MTSs are also sensitive to the filter 

bandwidth used
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Results – DPRK Earthquakes

• Hypocentres of five earthquakes from IDC REB and LEB 

catalogues.

• Bandpass filter 0.04 - 0.1Hz.

• Earthquakes are dominantly DC MTSs. 

• One DPRK event (right) has 89% DC, and 62% waveform fit, but 

has an unusual vertical dip-slip/shallow dipping strike-slip focal 

mechanism.

• Two events in China are well-constrained (high VR) as strike-slip 

earthquakes, however depth is not well constrained.

• Station distribution is not ideal for DPRK earthquakes - stations 

are in two clusters north and south.

• Not possible to fit Love waves correctly for some stations (e.g., T 

component for stations KS31 and TJN, see right).



UK Ministry of Defence © Crown Owned Copyright 2025/AWE Slide 13 of 16 

Results – Event Characterisation

• Source-type of the MTSs can be plotted on a 

Hudson plot.

• Isotropic MTSs towards the top and bottom of the 

plot. DC sources plot in the centre of the x-axis and 

CLVD sources are at the x-axis extremities.

• Explosions (red), collapse (cyan) and earthquake 

(green) sources for DPRK are all in separate, distinct 

clusters – event discrimination may therefore be 

possible.

• Earthquakes plot in the centre of the Hudson plot. 

• Explosions plot in the positive isotropic space (i.e., 

increasing volume) and the collapse event plots near 

the closing crack source mechanism (-TC). 
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Difficulties with Using Surface Waves for MTSs

• Several fundamental challenges posed by using surface waves (0.02-0.1Hz) to calculate full MTSs for shallow 

(<5km) sources.

• Mxz and Myz components have near-zero amplitudes and therefore cannot be resolved in the inversion process. 

0.6km source 20km source
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• The Mzz and (Mxx + Myy) moment tensor elements are independent of azimuth and cannot be independently 
constrained for shallow sources.

• Vertical component seismograms generated by explosions or vertically oriented CLVD sources, are visually identical.

Difficulties with Using Surface Waves for MTSs
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Summary

• Event characterisation might be achieved by using MTSs for the DPRK nuclear test site.

• MTTime is sensitive to the waveform filter frequency, event location and station time shifts.

• Use fixed station Δt for all events (approximate path correction) until an improved MTS is found.

• Use “1.5D” fundamental mode surface wave synthetics (Fox et al., 2012) and/or 3D velocity 

models using SPECFEM3D (Komatitsch et al., 2023).

• Compare MTTime with MTUQ and Bayesian methods (Chiang et al, 2025) 

• Can body-wave waveforms and polarities be used to improve MTSs? 

Future Directions
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