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I
Preliminaries

# stations

Map of seismic events (2014 – 2024) associated with at least 
one infrasound detection (REB), courtesy of H. Fauvel, CEA.



I – Preliminaries
●○○○ Characterization without graphs

Using full-wave modelling[1]

❶10 seismic signals (▲): 1 − 1.5 kt TNT.

❷1 infrasound signal (▲): 0.1 − 0.25 kt TNT.
❸102 videos of blast waves: ∼ 0.25 kt TNT.

Based on empirical laws

• Local magnitude (ML):  3.3 (USGS) or 3.8 ±
0.1 (CEA)  0.1 − 0.6 kt TNT.

• Multi-technique analysis[2] : 0.13 − 2 kt TNT.

Based on AI? P2.1-716 (Noëlé, CM, Lehmann).
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[1] Millet et al., ITW, 2023.
[2] Pilger et al., Scientific Reports, 2021.

ML
[1]

Fig. : Yield vs ML, Beirut (2020).

𝑊 (t TNT)

[2]



I – Preliminaries
○●○○ Graphs[3] are everywhere

Graph = (vertices, edges) = (𝑉,𝐸)

• Universal representation for structured data.

• Social networks (people, messages), biology 
(atoms/proteins, chemical bonds), sensor networks 
(stations, geodesic), recommendation (users/items, ratings), 
transportation (cities, roads/flights), ...

Nodes and edges can carry information 𝐗 ∈ ℝ|௏|×஼

• Node features (𝐱௝ ∈ ℝ஼): age/interests, charge/position, 
waveform/noise level, traffic load/delay at airport, ...

• Edge features (𝐞௜௝): distances, correlations, similarities, ...
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[3] https://ecoles-cea-edf-
inria.fr/files/2025/06/GNN_2025_SummerSchoolCEAEDFINRIA_Millet.pdf
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Fig. : Example of (𝑉, 𝐸).

                                   

Learning tasks on graphs
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𝐗 = (𝐱𝟏, … , 𝐱|𝑽|)

Node-level, Edge-level, 
Graph-level



What we know

• Vertices (△): French seismological network*.

• Features: Station waveforms, positions of stations.

• Data set: 𝑛 ∼ 10ହ seismic events (REB) recorded 
during 1995 – 2024.

What we don’t know (and want to predict)

• Edges, relevant stations.

• Characteristics 𝐲 of new earthquakes (magnitude 
ML, depth, location, …), i.e. 𝐲 = 𝑓 𝑉, 𝐸, 𝐗 .

• A way to adapt! Depending on the data available, 
relevant stations and edges can change.

I – Preliminaries
○○●○ An example of distributed data
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*FSN: French Seismic Network.

Fig. : EQ, FSN*, 1995 – 2024
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I – Preliminaries
○○○● 𝑓 = Graph Neural Networks (GNNs)
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Fig. : Dynamic graphs and Graph 
Convolution.
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Dynamic GNNs

• Idea: learn the edges implicitly during the training process 
using Graph Convolution (GC) layers:

𝑉, ∅, 𝐗 → ⋯ → 𝑉, 𝐸 ௞ , 𝐗(௞) → ⋯ → 𝑉, 𝐸 ே , 𝐗(ே)

• Interpretability: learning 𝐸(ே) offers a data-driven way to 
assess station relevance for each prediction (𝑦௜).

Other advantages of GNNs

• Do not require a fixed input: stations can be added/removed, 
or repositioned over time; recording quality may change.

• Can handle graphs with different sets of vertices → transfer 
learning from one region to another.
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II
Graph Neural Networks

Training
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The Message Passing (MP) paradigm:

𝐱௝
(௞)

                            
 𝐱௝

(௞ାଵ).

• The AGregate step over the 𝜅-hop neighbors controls 
the receptive field at each layer: AG = max(. ), ∑(. ), …

• The UPdate step refines the aggregated message by 
combining it with the node’s current state.

Who are the neighbors 𝑖 ∈ 𝒩௝?

• Fixed, through 𝜅-nearest neighbors graph constructed 
from the geographic distances 𝐩௜ − 𝐩௝.

• Adapted, using similarities 𝐱௝ between features.

II – Graph Neural Networks
●○○ How can we build edges? Theory

Dynamic GNNs for Spatio-Temporal Seismic Event Localization and 
Characterization with Multimodal Integration

C. Millet, X. Cassagnou, M. Mougeot

𝐱௜, 𝐩௜

Fig. : Scheme of MP (Google 
Research Blog. 2024).
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II – Graph Neural Networks
○●○ The Spatio-Temporal GC block - Practice

Edge generation: each node 𝑗 is connected to 𝑖 ∈ 𝒩௝

which show maximum similarity

• Geographic proximity: nearby stations often 
observe similar signals → 𝒩୥ୣ୭.

• Feature similarity: distant stations can exhibit 
similar waveform characteristics → 𝒩ୱ୧୥.

Feature update: max pooling along the edges 𝑗𝑖

𝐱௝
௞

→ 𝑓 𝐱௝
(௞)

୥୪୭ୠୟ୪

+ 𝑔(𝐱௜
௞

− 𝐱௝
(௞)

)

୪୭ୡୟ୪

→ 𝐱௝
௞ାଵ

.

4 neural networks (𝑓, 𝑔) × 2 neighbors.

Multi-scale embedding: features produced by each STGC
layer are concatenated.
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Fig. : STGC Block.
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Fig. : multi-scale embedding.
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II – Graph Neural Networks
○○● Overview of the architecture

Dynamic-GNN

❶Convolutional Encoding: extraction of features 
using a CNN-based encoder  dim. reduction ⇒ 𝐱௜.

❷Spatial feature fusion through 𝑁 steps of STGC
 perceptive field is gradually enlarged.

❸ Aggregation: condenses the information into a 
single fixed-size vector: 𝐳 = max

௝
 𝐱௝.

❹Prediction: extraction of graph-level seismic 
information  magnitude, depth, location (= 𝐲).

Edgeless-GNN

②STGC are substituted to a MLP with 𝐗||𝐏[4] as input.
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[4] van den Ende & Ampuero (2020)
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III
Numerical results
FSN SCSN
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Datasets:

• FSN[5] (France): 2019–12/2021; 𝑉 = 42.

• SCSN[6] (USA, CA): 2000–06/2019; 𝑉 = 72.

• ML > 2.5 ⇒ small datasets (∼ 1k events).

Processing of signals 𝐬௝
.

∈ ℝ஼×௉ (= features)

• # of components 𝐶 = 1[𝑧] or 𝐶 = 3[𝑥, 𝑦, 𝑧], time 
samples 𝑃 = 2048, time windows 200 s or 100 s.

• Band-pass: 1 – 8 Hz or 1 – 1.5 Hz.

Dynamic GNNs for Spatio-Temporal Seismic Event Localization and 
Characterization with Multimodal Integration

C. Millet, X. Cassagnou, M. Mougeot

III – Numerical results
●○○○○ Datasets & processing

[5] https://renass.unistra.fr/
[6] https://www.fdsn.org

𝐬௝
[௬]

𝐬௝
[௫]

𝐬௝
[௭]

𝐬௝
[௭]

ML > 2.5
ML > 3.0Fig.: # of events, SCSN vs FSN.
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Fig.: 2021/01/02, ML ≃ 3.3 (FSN)

1 – 8 Hz

Sn

1 – 1.5 Hz



Separating data vs training variability

• k-fold cross validation: test sensitivity to dataset 
splits (90% - 10%) → data variability.

• Random seeds: repeat training with different 
initializations → optimization variability.

Not a single training…

• 100 trainings per model (folds × seeds) 
       ⇒ 100 RMSEs; 𝜎ଶ = 𝜎୭୮୲

ଶ + 𝜎ୢୟ୲
ଶ .

• × 10’s of GNN variants[7] ⇒ 10ଷ’s of models, but 
today only the best one:
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III – Numerical results
○●○○○ Error metrics

+
=

Fig.: Ex. of k-fold for the 
French dataset (FSN).

90% 10%
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2.5 3.5 4.5

vs

w/ STGC w/o STGC

[7] see arxiv2025.



Learned uncertainty

• Uncertainty learned: ±𝟎. 𝟎𝟐 vs ±0.3 in most 
available bulletins (for ML ≥ 2.5).

• STGC reduces variance and bias compared to 
baseline (edgeless-GNN).

• Most variability comes from large magnitudes 
variability (𝜎 ≃ 0.14 for ML > 3.75 42 events!), 
but stays below operational benchmarks (±0.3).

III – Numerical results
○○●○○ Impact of  STGC* on performance 
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Fig.: RMSE for SCSN
and FSN (best model).

ML

RMSE
(for ML)

𝜎ଶ

Fig.: Variance 
decomposition FSN.

*Spatio-Temporal Graph Convolution
SCSN: Southern California Seismic Network 
FSN: French Seismic Network.
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III – Numerical results
○○○●○ Impact of STGC on Robustness

Results
• STGC enhances robustness.
• Multi-scale embedding stabilizes learning for 

deeper architectures.
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Fig.: RMSE for magnitude, showing robustness as 
inputs are degraded.
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① ② ③
                           
erases rupture

details

                           

 + breaks alignment
to arrival times

SCSN
FSN

Fig.: w/ and w/o 
embedding.

Signal degradation steps
• Waveforms are degraded to mimic more 

realistic, noisy conditions: ① ⊃ ② ⊃ ③.
• ① Full spectrum (1-8 Hz).
• ② Narrow band (1-1.5 Hz).
• ③ Random time shift (-100 to 100 s).



Not a black-box:

• STGC (❷) learns spatial
attention mechanism.

• Max pooling (❸) condenses 
and reveals key stations.
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III – Numerical results
○○○○● Interpretability of graphs ML = 2.4 ML = 1.7

ML = 2.4ML = 1.8
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Fig. : Scores (ML) 
across STGC layers 
for new events.

𝑖𝑗 grayed out
if 𝐬௝ < 1%

Color ∝ 𝐬௝

with 𝐬௝ ∼ 𝛻𝐱ೕ
𝑦௝ .
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IV
Multimodal integration

⊕
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Architecture: 2 pretrained modality-specific models:

• Dynamic-GNN processes data from stations to 
produce embedding + Proj head. 

• Text encoder fined-tuned* to the technical 
language of bulletins (“expurged” of the 
predicted values) + Proj head. 

Hybrid loss: 𝑙୍ + 𝜆𝑙୍୍ + 𝜇𝑙୍୍୍

I.   Alignment: InfoNCE (contrastive objective).

II.  Regularization: KL, Gutenberg–Richter.

III. Supervised head (lightweight) 𝐱෤ ↦ 𝐲 to 
ensure calibration while reducing bias.
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IV – Multimodal integration
●○ Principle

Fig. : GNN-LLM 
architecture. 
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𝐱෤ ∈ ℝ𝟐𝟓𝟔

𝐲

❹

* LLaMA-3 (Meta) + LoRA/QLoRA, persp.: “SeismoBERT”.



Training & validation:

• Training on FSN catalogue (waveforms + derived
bulletins*, 2019–2021) for ML>1.5.

• Validation against external agencies (ETHZ MLv, 
EMSC/EPOS) via ML(Pred)-MLv(ETHZ).

First trends

• GNN-only: systematic bias +0.3 vs MLv (ETHZ), 
and -0.2 vs ML (RMSE~0.14).

• GNN+LLM reduces the bias (+0.1 vs 0.3) but so far 
only on the common dataset FSN ∩ ETHZ.

Dynamic GNNs for Spatio-Temporal Seismic Event Localization and 
Characterization with Multimodal Integration

C. Millet, X. Cassagnou, M. Mougeot

IV – Multimodal integration
○● First results
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Fig.: Predicted ML – MLv (ETHZ).

Tab.: Pred. ML – ML (FSN).

[~100 variants]

* Without predicted ML, depth, loc.



Dynamic-GNNs:
• Accuracy/robustness: ∼1k events already yield near-

expert performance, even with low spectral richness!

• Interpretability: Dynamic graphs reveal the key stations, 
that can be compared to that analysts rely on.

• + LLM: corrects bias, links waveforms bulletins, 
classifies unseen events (zero-shot classification).

Limitation:

• Preliminary results on research datasets: to be 
consolidated on larger & diverse catalogs.

• Need for global associator to select waveforms — yet 
GNNs can self-associate (PLAN[8]).

[8]Phase picking, Location, and Association Net. ( Xu Si et al., Nature, 2024).
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Key outcomes & perspectives
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Fig. : Waveforms (x) and bulletins (●), 
visualized using PCA and t-SNE.
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Special thanks to the invisible crowd 
of AI assistants (GPT-5, …) — still 
working on inclusivity too!

Paper: arxiv2025.
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Thanks for attention!
And may your graphs stay connected
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What’s next?
Robustness & trust:

• Self-adaptive dyn-GNN for the IMS (“I’m thinking” analogy).

• Scalable methods and confidence metrics for automatic 
detections and event characterization.

• Privacy, distillation & unlearning for sensitive data.

Graph Foundation Models: 

• GFMs for multimodal IMS data (stations, signals, events).

• Breaking silos across seismic, infrasound, hydroacoustic & 
radionuclide networks.

• Integration of LLMs as graph nodes/agents → acting like 
analysts and interacting with databases, physical models...

⊕

Graph of 
experts

Graph of 
tools and 
data


