Acoustic Propagation Modelling on the Cloud

R. Marques Rojo, J.D. Gonzalez, S. Blanc Argentinian Navy Research Office & UNIDEF (CONICET)

P1.3-766

3D parabolic-equation model in *Julia* to simulate acoustic **transmission loss** (TL) in the ocean.

- 3D models capture diffraction effects, offering more realistic insights into underwater acoustic propagation.
- The code runs on a desktop CPU, GPU or in the Cloud.

Frequency (Hz)	Screen nodes (n _z x n _y)	Runtime
5	10.6 M	5 min 15 s
10	40.3 M	30 min 54 s
16	107.5 M	2h 01 min 7 s

A run at 28 Hz, with **229.5M screen nodes**, ran **under 11 GiB VRAM**.

Takeaways

- provides access to high-performance resources at relatively low cost, making this approach particularly valuable for small institutions and research groups in low-income countries.
- Spot pricing cut cost a lot;
 checkpointing is key for long runs.
- The aim is to make larger
 3D simulations more
 feasible without having
 to own HPC.

