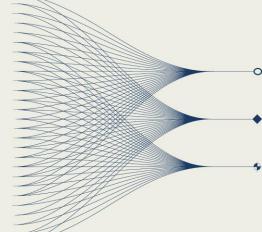


Empirical relationship among seismic and fault parameters on the Talysh dynamic earthquake zone (southern Azerbaijan)

P1.2-101

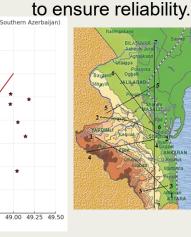

Aliyev M.M., Aliyev Y.N., Babayev G.R, Ismayuil-zade T.T.

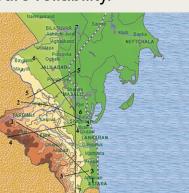
Geology and Geophysics Institute
Ministry of Science and Education of Azerbaijan

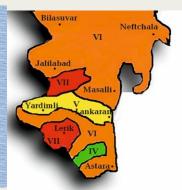
INTRODUCTION AND MAIN RESULTS

This presentation examines the empirical relationships linking seismic parameters—such as magnitude, displacement, and recurrence intervals—with fault characteristics in the Talysh dynamic earthquake zone of southern Azerbaijan. It discusses the methodological framework, illustrates scaling trends with representative analyses, and highlights how these findings can enhance seismic hazard assessment, scenario modeling, and risk mitigation strategies in the region.

Empirical relationship among seismic and fault parameters on the Talysh dynamic earthquake zone (southern Azerbaijan)


Introduction


The Talysh dynamic earthquake zone, located in southern Azerbaijan along the Talysh Mountains significant seismotectonic Understanding the relationships seismic parameters—such as displacement, and slip rate is crucial for seismic between seismic and fault parameters. region, providing a foundation for scenario while bootstrapping was used to estimate trends with established global models, the study quality control measures, such as magnitude also seeks to identify unique characteristics of homogenization, declustering were implemented the Talysh fault systems.


Aliyev M.M., Aliyev Y.N., Babayev G.R, Ismayuil-zade T.T.

Methods/Data

near the Azerbaijan-Iran border, is a region of A comprehensive dataset was compiled, including activity. historical and instrumental earthquake catalogs, between fault geometry data (length, surface displacement moment and segmentation), and geologic and geodetic magnitude, ground motion, and recurrence information. Statistical analyses were conducted intervals—and fault characteristics like length, to explore log-linear and multivariate relationships hazard assessment. This study aims to develop Regression techniques, including least-squares empirical scaling relationships specific to this methods, were applied to identify scaling trends, earthquake modeling, risk evaluation, and uncertainties. Spatial association of earthquakes infrastructure planning. By comparing regional to mapped fault segments was verified, and data

P1.2-101

Results

The study identified clear correlations between m and fault length and displacement, indicating that faults tend to produce larger earthquakes. Recurr inversely related to slip rates, consistent with gen though local variations reflect structural complexi Talysh zone. These empirical relationships, while global trends, reveal distinct regional patterns like compressional and transpressional tectonics, fau contrasts. Illustrative figures show log-linear scal length and displacement, and recurrence interval highlighting both the trends and scatter inherent t

Conclusions

Empirical relationships derived for the Talysh dynamic earthquake zone provide a practical basis for regional seismic hazard assessment a scenario earthquake modeling. These findings facilitate more accurate estimation of potential earthquake magnitudes, recurrence times, and fault behavior. Future work should incorporate refined paleoseismic and geodetic data, improve slip-rate constraints, and expand the earthquake catalog to enhance predictive capability. Integration of these relationships into probabilist and deterministic hazard models will improve regional earthquake preparedness, risk mitigation and infrastructure resilience.

Azerbaijan

Southern Azerbaijan