

O1.1-579

Tracking jetstream winds through gravity waves arriving on surface based pressure sensors

Falco Bentvelsen, Jelle Assink, Läslo Evers

Royal Netherlands Meteorological Institute (KNMI)

11 September 2025

O1.1-579

Motivation to study the jet stream:

Severe weather events can be linked to specific jetstream configurations:

- > cold snaps
- > snowstorms
- > heatwaves
- droughts
- > floods
- > ...

Example of a configuration with two jet streaks that enhance surface weather.

In this configuration up to **50 cm of snow** fell in 2 days!

[Fig 16 of Uccellini & Kocin 1987]

O1.1-579

It is challenging to measure at 10 km altitude! (problem)

Current observational techniques:

Airplanes; Mode-S

Radiosonde balloons

Satellites; e.g. LiDAR (ALADIN), ...

Research funding (solution):

Surface pressure perturbations

Tracking Jetstream Winds

WP1: Gravity Waves

History

Tracking Jet Stream Winds from Ground Level Pressure Signals¹

[Herron & Tolstoy, 1969]

Royal Netherlands
Meteorological Institu
Ministry of Infrastructure
and Water Management

O1.1-579

Gravity wave detections at IS26

BEAMFORMING METHOD:

- > On 4 hour windows of filtered pressure signals,
- > to find directions **\(\phi_{GW} \)** and apparent velocities c_{app} of gravity waves.
- > We relate these to overpassing winds.

O1.1-579

Seasonal dynamics

Detections are mostly from westerly sectors, with a seasonal cycle, shifting to more northerly in winter.

O1.1-579

Temporal dynamics

Detections have high Signal-to-Noise-Ratio SNR;

- In the winter period during day and night (more baroclinicity)
- > In the **summer** period during **night** (night is stable in lower troposphere)

O1.1-579

Model and radiosonde balloons

WE COMPARE DETECTIONS;

- with ERA5 winds in the column directly above IS26.
- with radiosonde soundings launched 170 km west of IS26

O1.1-579

Comparison to model and radiosonde balloons at 250 hPa (~10 km)

A.. - ..B:

In periods of more wind at jet height, the direction of the detected gravity waves corresponds to the model and balloon measured winds.

C:

When **wind speeds are low**, there is barely any relation between observations and ERA5 model / balloons.

We do not correct for incidence angle here, therefore overestimation of velocity by detections is expected.

O1.1-579

Gravity wave source mechanism: shear instability

This can happen when the **Richardson number** is in the critical range of 0 - 0.25.

D: a layer of critical Richardson number is present in the vertical profile between 9 and 11 km altitude.

O1.1-579

Vertical profile climatology

We find significant correlations between the **model/balloon** and the **detections** of gravity waves on the microbarometer array.

On the altitudes near the surface, there is no/weak directional relation between the surface based detections and the model.

Above ±16 km, correlations decreasé as well.

O1.1-579

Take home message

- > There is information on jetstream winds in mesoscale gravity waves.
- Solution > Gravity waves at IS26 come mostly from the westerly sectors, with a seasonal cycle, shifting to more northerly directions in winter.
- > Throughout the upper troposphere, we find **significant correlations** between the **directions** of model/balloons winds and the surface based detections of mesoscale gravity waves.

falco.bentvelsen@knmi.nl