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• Development of a microbarom observation operator.

• Proof of concept for diagnostics of NWP models’ relative performances

in the middle atmosphere Letournel et al. 2024, doi:10.1029/2024JD042034

• Fully differentiated processing chain for data assimilation using

automatic differentiation and a ML propagation meta model

• Towards first experiments of data assimilation using synthetical observations.
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Data: IMS station IS37 (year 2021)

Array processing: MultiChannel Maximum-Likelihood

(MCML, Poste et al. 2023)

 adapted to the 360° observations of microbaroms

Source model AtmospheRic InfRasound by Ocean Waves,

(ARROW): Acoustic intensity (W.m-2.Hz-1), every 3 hours, on

a 0.5°x0.5°grid, 22 freq. bands from 0.08 Hz to 0.6 Hz.

Propagation simulations:

 Parabolic Equation, PE (NCPAprop, Waxler et al., 2021)

 Parameterized transmission loss (Le Pichon et al. 2012)

 CRNN predictions of transmission loss (Cameijo et al.

2025)

Towards a tool to assess and update atmospheric specifications in the 

middle atmosphere using microbarom observations.

Infrasound monitoring activities to assess compliance

with the CTBT require good knowledge of the Middle

Atmosphere (MA, 20-120 km), for source localization and

characterization.

Numerical weather prediction (NWP) models, which feed

National Data Centres are significantly biased in the

middle atmosphere (e.g. Le Pichon et al. 2015).

Reason for this is the lack of operational wind

measurements in the MA above 30 km as well as the

relatively low top (~80 km) and sponge layers (> 30 km)

of the NWP models.

Objectives

Using oceanic infrasound (microbaroms) to probe the MA

and improve atmospheric specification, developing :

 Diagnostic tool to assess relative performances of

atmospheric products (simulation outputs), guiding

the choice of best atmospheric specification

 Data assimilation using a differentiable

observation operator to update atmospheric

specifications

For past/current efforts using microbaroms or other 

sources, see e.g.: Donn & Rind, 1972; Assink et al., 

2019; Vanderbecken et al. 2021; Vorobeva et al. 2024; 

Amezcua et al. 2024
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Context Data and Tools Adapting the array processing
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 MCML estimates 𝜃, 𝑣, 𝑠2, 𝜎2 through a 

likelihood function maximization.

(where 𝑠 is signal, 𝜎 is noise )

 We adapt it to microbarom observations: 𝑠2 is 

derived over the complete (𝜃, 𝑣) grid. 
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PropagationAtmospheric specifications

 WACCM, NCAR’s forecast product, version 6, up

to ~130 km. (Gettelman et al. 2019)

 Hight-top model product

 ERA5, ECMWF’s re-analysis, cy41r2, up to ~80 km

(Hersbach et al. 2020)

+ HWM-14/NRLMSISE-00, up to ~130 km

(Drob et al. 2015; Picone et al. 2002)

 Approach often used in IS community

Simulating the observation
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Zonal wind at IS37 (m/s)

WACCM
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Key message :

 We aim at assessing the relative performances

of different models instead of that of 

ensemble members for a given model

(as in Vanderbecken et al. 2021, who

used vocanic infrasound and Meteo-France

ARPEGE ensemble.)

Effect of atmospheric specification

on PE transmission loss (TLoss)

Effect of propagation model on TLoss

PE LP12

Key messages :

 Differences caused by the propagation method 

(PE or Le Pichon et al. 2012, LP12)

appeared to be larger than differences induced 

by the use of difference specifications

 Explicit PE simulations are  necessary

to assess model relative performances

goes through our MCML processing:

 accounting for the response of

the antenna and for that of the algorithm

ARROW PE
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Simulated microbarom distribution at IS37 (De Carlo et al. 2021)

Key messages :

 An observation operator was developped.

 A metric is used to compare observed

azimuthal distributions to simulated ones:

the circular optimal transport metric based on

the Wasserstein distance (Flamary et al. 2021)
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Full year of microbarom
simulation at IS37

Metric-based assessment
of atmospheric specifications

Introducing a CRNN to achieve a fully 
differentiable observation operator

■ The polar vortex leads to observations of 

microbaroms mainly from the West (Atlantic Ocean) 

Model performs better in the winter (low metric).

■ We simulate the sidelobes induced by the 

array/algorithm response (North and South-East).

■ Simulations overestimate amplitudes when changes 

in the main direction of arrivals occur, e.g.:

- During sudden stratospheric warming (SSW), in Jan. 

- During the winter-to-summer stratospheric winds

transition period

■ The metric allows systematic comparison of 

atmospheric specifications (the lower the better).

■ Two periods stand out where WACCM 

outperforms ERA5+HWM/MSIS (during SSW)

■ First inversion (>~4 Jan 2021) is related to 

mesospheric guiding best simulated with WACCM

■ Second inversion (>~16 Jan 2021) is related to 

stratospheric guiding best simulated with WACCM

■ PE simulation software is not differentiable as such

and not adapted to Data assimilation process.

■ CRNN trained on PE outputs and developed by 

Cameijo et al. 2025 proves to be robust wrt explicit 

PE simulations for simulating transmission losses.

■ CRNN is autodifferentiable with python/tensorflow.

■ We now have a robust, quick and differentiable 

method to model the infrasound propagation

simulation
Simulated microbaroms using PE

Simulated microbaroms using CRNN (trained with PE)
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Automatic differentiation
of the observation operator: application

 The validation of the full observation operator leads 

to an error of 2% between tensorflow’s automatic  

differentiation and finite differences derivation.

 We estimate atmospheric model and source errors, 

respectively, using differences between successive 

forecast (Polavarapu et al. 2005).

 Using the gradient of the observation operator 

derived with tensorflow we validate the hypothesis 

of greater sensitivity of the observation operator

to the atmosphere than to the source.

Conclusion and Perspectives

 Robust microbarom processing chain and proof of 

concept for deriving diagnostics of NWP models 

relative performances in the middle atmosphere.

(Letournel et al. 2024)

 Fully differentiated processing chain for data 

assimilation thanks to tensorflow’s automatic 

differentiation and a ML propagation meta model.

 Formalization of the data assimilation scheme :

• Use of EOFs on atmospheric fields

• Background (prior) error covariance matrix

• Observation error covariance matrix

Towards a first proof of concept for 

microbarom assimilation (ongoing tests)

See paper on the proof of concept for diagnostics:

Letournel, P., Listowski, C., Bocquet, M., Le Pichon, A.,& Farchi, A.

(2024). Journal of Geophysical Research: 

Atmospheres, 129,e2024JD042034.

https://doi.org/10.1029/2024JD042034
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