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You get what you pay for
Millet et al., ITW2023

Yield estimates (Beirut, 2020)

■ Using Green’s functions of the 

wave equation (SEM3D) + signals.

■ 𝑊S ∼ 𝑊IS with ERA5.

■ Adding small-scale fluctuations 

alters 𝑊IS by 𝑂(10). 

■ Using a compressible flow solver

and videos of shock dynamics.
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Can data-driven techniques help?

November 6, 2024 4

■ Limitations of ML in scientific modeling

■ Most NNs (CNNs) are not specifically designed for computing a 

Green function or solving PDEs.

■ Databases are often biased (small training set size 𝑁).

■ NNs are often over-parameterized (DOF≫ 𝑁), making them 

excellent interpolators, but with limited extrapolation capabilities.

■ Challenges and objectives

■ Map multi-scale fields to waveforms and/or TLs despite spectral 

bias, which can hinder accurate capture of fine-scale features:

NN: 𝑐eff 𝐱 ↦ 𝑢(𝐱, 𝑡)

■ Ensure robust extrapolation for out-of-sample conditions, which is 

essential for real-world applications and unexpected scenarios.

Input: 𝑐(𝐱), 𝐮(𝐱)

Output: 𝑢(𝐱, 𝑡)

CNN filters
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Neural Operators
Basics and intuition
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Neural Operators
●○○○○ Kernel methods

■ Intuition (𝑡 is ignored for simplicity)

■ If 𝐺 is the Green function of a parametric PDE, then:

𝑢 𝐱 = න 𝐺 𝐱, 𝐲 𝑓(𝐲) d𝐲.

■ 𝐺 is modelled as a kernel 𝜅𝛉 defined by a NN with parameters 𝛉:

𝐺 𝐱, 𝐲 ≃ 𝜅𝛉 𝐱, 𝐲, 𝑐 𝐱 , 𝑐 𝐲 .

■ Neural Operator (NO)

■ For any 𝐯: ℝ𝑑 → ℝ𝑚, a NO is defined by

𝐊𝛉𝐯 𝐱 = න 𝜅𝛉 𝐱, 𝐲, 𝑐 𝐱 , 𝑐 𝐲 𝐯 𝐲 𝑑𝐲 .

■ Four variations: Graph NO, multipole GNO, low-rank NO and Fourier NO*.

■ FNO (convolution kernel) 𝜅𝛉 𝐱, 𝐲, 𝑐 𝐱 , 𝑐 𝐲 = 𝜅𝛉 𝐱 − 𝐲 ⇒ 𝐊𝛉𝐯 𝐱 = 𝜅𝛉 ∗ 𝐯.

Infrasound Technology Workshop, VIC, 2024 November 6, 2024

* Zongyi Li, Kovachki et al., 2021.

NO

Waveforms

𝑢(𝐱⊥, 𝑡)

(𝐱⊥, 𝑡) ∈ ℝ𝑑

ℱ−1

ℱ

𝐱 ∈ ℝ𝑑
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Neural Operators
○●○○○ Architecture

■ Architecture

■ The mapping is learnt iteratively: 
𝑐(𝐱)

𝐱
→
𝑃

𝐯0 →
𝐹1

⋯
𝐹𝐿

𝐯𝐿 →
𝑄

𝑢 𝐱

■ 𝑃 is an uplift layer, 𝑄 is a projection layer and Fourier layers 𝐹𝑙

are defined by: 𝐯𝑙 = 𝜎𝑙 [𝐖𝑙+𝐊 𝑐 𝐯𝑙−1 + 𝐛𝑙).

■ Kernel (non-local) integral operators

■ Assuming 𝐾 is a convolution kernel, the convolution theorem 

leads to:

𝐊 𝑐 𝐯 = ℱ−1(ℱ 𝛋
𝐑

ℱ 𝐯 )

■ The weights (𝐑 ∈ ℂ𝑁×𝑀) are learnt inside each layer.

Uplift 𝑃

F-Fourier

F-Fourier

Proj. 𝑄TL

𝑐(𝐱) with 𝐱 ∈ ℝ𝑑

ො𝑢( ถ𝐱⊥, 𝑓

∈ℝ𝑑

)

Proj. 𝑄Wf

𝑢(𝐱⊥, 𝑡)

Infrasound Technology Workshop, VIC, 2024 November 6, 2024

⋮

Fourier filters
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Neural Operators
○○●○○ FNO usage

■ Training: leverage limited dataset by combining real 

observations with synthetic data.

■ Few real-world observations (∼ 102) form the foundation. We 

augment this data with synthetic signals created via simulations.

■ Data augmentation: for each event, 102 GW fields are generated 

to produce 102 synthetic waveforms

⇒ input-output pairs 𝑐𝑖 , 𝑢𝑖 𝑖=1
𝑃 with 𝑃 ∼ 104 (20% validation).

■ Hybrid optimization (Rathore, ICML2024*).

■ Datasets for evaluation

❶Sanity check: Idealized conditions for 𝑐𝑖 with ducting effects, 

allowing model performance evaluation under simplified scenarios 

and optimization of FNO layers (𝜎, 𝑁 and 𝑀).

❷Real-world case: Dataset of waveforms recorded at IS37 during 

ammunition explosion campaigns in Hukkakero (2014–2024).

Infrasound Technology Workshop, VIC, 2024 November 6, 2024

* https://arxiv.org/abs/2402.01868

https://arxiv.org/abs/2402.01868
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Neural operators
○○○●○ Validation on new profiles (case ❶)

■ Spatial evolution of TL is well reproduced for various sound speed 

ratios (from 𝑅 < 1 to 𝑅 > 1).

■ Small-scale features are more difficult to predict.

■ 2 layers, 𝑁 = 192 neurons and 𝑀 = 80 modes ⇒ 6.106 parameters.

overparameterized

FNO

Ref.

TL at 0.5 Hz

Infrasound Technology Workshop, VIC, 2024 November 6, 2024

𝑅 = max
Strato

𝑐eff(𝑧)

𝑐eff(0)
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Neural operators
○○○○● On the # of modes

Impact of modes (48 neurons/layer, 4 layers)

■ Main stratospheric arrivals are reproduced for 

𝑅 ≥ 1 unless 𝑀 is too small ⇨ A1, A2.

■ The higher the # of modes, the smaller the 

RMSE (4 vs 42 for 𝑅 = 1.06) ⇨ B.

■ Resolution invariance: (256 vs 1024 for 

resolution of 𝑐eff(𝑧), with 𝑀 = 42) ⇨ C.

4
42

Ref

A1

B

256
× 4

1024
C

𝑀 = 4

𝑅 = 0.88

𝑅 = 1.00

𝑅 = 1.06

𝑀 = 42

A2 4
42
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Gravity waves
A random multiwave model
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Eliassen-Palm flux and GW drag

 EP flux:

𝐅 ∝ −𝜌0𝐮′𝑤′ [Pa].

 GW drag (GWD):

𝜌𝜕𝑡ഥ𝐮 = 𝜕𝑧𝐅 [m.s-1.day-1].

sgn 𝜕𝑧𝓕 < 0
𝜕𝑡 ത𝑢 < 0 ⇒ ത𝑢 ↓

-95               -5 5                 95

m.s-1

ERAi (JJA)

Zonal-mean GWD*

Δ = 4 m.s-1.d-1

sgn 𝜕𝑧𝓕 > 0
𝜕𝑡 ത𝑢 > 0 ⇒ |ത𝑢| ↓

* Computed with a 

GCM (LMDz)

Modeling fluctuations
●○○○ Basics on GWs

November 6, 2024

Impact on the zonal-mean wind

 𝐅 ∼ direction of GW propagation.

 div(𝐅) gives a force (/unit mass) 

acting on the mean flow. 

Infrasound Technology Workshop, VIC, 2024
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* Ribstein, Millet, Lott, JAMES, 2022.Modeling fluctuations
○●○○ A multiwave model 

Infrasound Technology Workshop, VIC, 2024 November 6, 2024

General formalism for GWs

■ Use a stochastic Fourier series of individual 

monochromatic wave packets:

𝐮′
𝑇′

= 

𝑗=1

𝐽

𝐶𝑗

ෝ𝐮𝑗(𝑧)

𝑇𝑗(𝑧)
𝑒𝑖(𝐤𝑗.𝐱−𝜔𝑗𝑡) ,

𝐶𝑗: intermittency coefficient.

■ EP flux evolution is given by*:

𝐅𝑗(𝑧𝑙+1) = −
𝐤𝑗

𝑘𝑗
Θ[ ෝ𝜔𝑗

2 𝑧𝑙 ]

❶

min[𝐹𝑗 𝑧𝑙 𝑒−𝜇Δ𝑧

❷

, 𝐹𝑗
𝑐(𝑧𝑙+1

❸

)]

❶ 𝐅𝑗 = 𝟎 above critical levels ( ෝ𝜔 = 𝜔 − 𝐤𝑗 . 𝐮).

❷ is reduced by diffusion.

❸ is limited by that of a saturated wave.

Random variables

■ 𝐤𝑗, ෝ𝜔𝑗 and 𝑧𝑗 are random.

■ 𝐤𝑗 ∼ U(𝑘min, 𝑘max), 𝑘max related to Δ𝑥. 

■ Direction of 𝐤𝑗 ∼ U 0,2𝜋 .

■ Phase speed: 𝑐𝑗 ∼ N(0, 𝜎𝑐)

Ex.: Contribution of #𝑗 to σ𝑗 𝐶𝑗
2𝜕𝑧𝐅𝑗 (GWD).

Oct., 45-75°N

Effect of critical 

levels (❶)

Amplitude 

saturation (❸)

ത𝑢
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Modeling fluctuations
○○●○ Hukkakero campaigns (❷)

■ Variability & stochasticity

■ GWs are characterized by intermittency which 

is subject to day-to-day variability.

■ Each GW field introduces small-scale 

structures that pose significant challenges for 

neural networks to capture.

2014

■ Training set

■ 113 events × 102 GW fields.

■ Mean atmospheric 

specification: ERA5.

■ Fine tuning is essential for 

obtaining good convergence 

of the loss (MAE+MSE).

Eff. Sound speed retrieval 

method (Vorobeva, 2023)

❷
❶

❶

❷

𝑐eff(𝑧)/𝑐eff(0)

Infrasound Technology Workshop, VIC, 2024 November 6, 2024
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w/o GWs

w/ GWs

Modeling fluctuations
○○○● Impact of GWs on TLs (❷)

TL (dB)

𝑅 = max
Strato

𝑐eff(𝑧)

𝑐eff(0)

❸

w/o GWs

𝑅

R
a
ti
o
 𝑅

0.5 Hz

❶

❷

❹

■ GWs increase 𝑐eff(𝑧)/𝑐eff(0) in the stratosphere.

■ For 𝑅 < 1, GWs introduce a bias in the TL statistics, causing 

the mean value to shift away from that obtained without GWs. 

T
L
 (

d
B

)

Infrasound Technology Workshop, VIC, 2024 November 6, 2024
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Preliminary results
TLs and waveforms
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Truth

17

Preliminary results
●○ TL variability using a FNO-1D (❷)

FNO

■ Dispersion (±𝜎) due to GWs and day-to-day variability of TL at IS37 

are correctly reproduced during training (6 yrs × 10 events/yr).

■ Predictions for the last 4 years are associated with errors that 

increase over time, reaching a few dB, except for specific # of GWs.

■ 6 FNO layers with 128 neurons/layer, 64 modes. New frequencies 

can be added using 𝑄TL.

Training is completed in less than 1h.

20 dB

-40

-80

Training

Validation /test

TL at 0.5 Hz

100 km

20 dB

FNO

Infrasound Technology Workshop, VIC, 2024 November 6, 2024

8989

2454
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Preliminary results
○● Waveforms using a FNO-2D (❷)

Infrasound Technology Workshop, VIC, 2024 November 6, 2024

𝑊 = 64, 𝑀 = 4

𝑊 = 64, 𝑀 = 8

■ Predictions in the shadow zone

■ Diffraction in the shadow zone is effectively 

reproduced overall with moderate 𝑁 and 𝑀 (64 and 8, 

resp. ⇨ 1.8 106 dof).

■ But too much complexity! The small size of the 

dataset (104) limits efficient learning of GW-IS 

interactions at the smallest wavelengths.

■ Variability & stochasticity

■ Scaling invariance: to minimize memory space, the 

training is conducted with signals of size 512, while 

validation is performed on oversampled signals (1024).

■ Stability: by reducing 𝑀, the number of parameters 

can be decreased, allowing the training to be 

completed in a few hours (training size of 104). Retarded time (s)

D
is

ta
n
c
e
 (

k
m

)

Ref. (frequ. band 0.1-2 Hz)

New eff. sound speed profile
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Conclusion
● take-home messages

■ Homogeneity and stability

■ FNOs capture the influence of underlying patterns on 

waveforms and TLs across varying distances and time 

scales with a same architecture.

■ Unlike PINNs, FNOs maintain stability without violating 

causality1, making them a robust choice for long-range 

wave propagation.

■ Adaptability to new data

■ FNOs generate solutions with accuracy that scales with the 

number of modes and is independent of discretization.

■ Source-dependence can be taken into account2.

■ Perspective: large-scale validation, involving out-of-

distribution GW fields (intermittency) ⇨ challenge: CPU costs 

associated with building waveforms datasets.

𝑤(𝑧)
1arxiv: 2203.07404
2Multiple-Input FNO (arxiv: 2404.10115)

MIFNO

Infrasound Technology Workshop, VIC, 2024 November 6, 2024
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⇨ Source characterization using interpretable dynamic GNN    

CM, X. Cassagnou, M. Mougeot

⇨ Bayesian inference using neural operators    

E. Noëlé, CM, F. Lehmann
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Parameters of U-FNO

■ 8 (4+4) Fourier layers 𝐅, two fully-connected layers for 𝐏, 𝐐𝐄, 𝐐𝐍 and 

𝐐𝐙 (projection operators for E-W, N-S and vertical displacements)

■ Physical dimensions are ↘ in the encoder (643 to 83) and ↗ in the 

decoder (83 to 642 × ต128
𝑡

).

Test case

■ 𝑎: S-wave velocity field in a 9.63 km3 cube (𝑎 = matrices 643)  

obtained from adding von Karman random fields in layers.

■ 𝑢: SEM3D using hexahedral mesh with elements of size 300 m    

(𝑓𝑐 = 5 Hz). Seismic source (moment tensor) is placed in the 

middle of the bottom layer. 256 virtual sensors equally spaced           

at 𝑧 = 0.

■ Computational cost : 3.104 × 50 min (64 CPUs) for SEM3D and        

11 h (4 Nvidia A100 GPUs) for training of the U-FNO.

21

U-FNO for deep learning of seismic waves
Architecture 64 × 64 × 128

1 ≤ 𝑡 ≤ 7.4

𝑎: 64 × 64 × 64
𝑢𝑁 𝑢𝐸 𝑢𝑍

U
Epoch
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1.6 s

2.6 s

3.6 s

FNO

SEM3D

𝑢EW (m.s-1)

A     

B    

C    

C

𝑓 > 𝑓𝑐

SEM3D FNOU-FNO for deep learning of seismic waves
Results (arxiv 2304.19242)
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FNO vs NM

𝑝(𝑡; 𝑥1)

Sample

■ The U-FNO can learn the 

relationship btw. 𝑐(𝑧) and 𝑝 𝑡 .

■ Good generalization.

■ No gap btw. the validation

loss and the training loss.

𝜖
(L

o
s
s
)

𝑐 (m.s-1)

𝑧
(m

) 𝑎𝑣𝐽(𝑧)
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Parameters of FNO

■ 4 or 6 Fourier layers 𝐅, two fully-connected 

layers for 𝐏 and 𝐐, 48 neurones/layer.

■ U-FNO: Physical dimensions are ↘ in the 

encoder (× 10−1) and ↗ in the decoder.

Test cases ⇨❷, ❸

■ INPUT: 𝑐(𝑥, 𝑧) is given by a matrix (1002 for 
❷ and 256 × 31 for ❸) obtained using 

simplified models (GMM, Waxler et al., 2008).

■ OUTPUT: waveforms are computed with a 

normal mode-based technique. Source at 1 

km: Kinney model with 𝑓0.

■ Comput. cost for training: 45 min for ❷ (1500 
profiles) and 2 h for ❸ (4000). Pred.:1 ms.

Random 𝑎 (nocturnal or 

stratospheric jet).

𝑐 (m.s-1)

𝑧
(m

)

𝑎𝑣𝐽(𝑧)

𝑧
(k

m
)

𝑐 (m.s-1)

❷❸

𝑎𝑣𝑠(𝑧)

𝑓0 = 0.25 Hz 𝑓0 = 18 Hz
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Causality Aware PINNs
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Loss function (general case)

■ For a system of 𝑄 PDEs ℱ𝑗 𝐮; 𝜆 = 0 (with 𝐮 ∈ ℝ𝑄)

𝜖Ω = σ𝑗=1
𝑄 1

𝑁𝑗
σ

𝑖=1

𝑁𝑗 σ𝑘=1
𝑁𝑘 𝜖𝑗𝑖𝑘

2

with 𝜖𝑗𝑖 = ℱ𝑗 𝐮 𝐱𝑖 , 𝑡𝑘 ; 𝜆

■ The residuals at 𝑡𝑘+1 are minimized even if the prediction at 𝑡𝑘 and 

previous times are inaccurate → violates temporal causality.

Illustrative example

■ 1D Allen Cahn equation:

𝜕𝑡𝑢 − 𝜖2𝜕𝑥𝑥𝑢 + 𝑓 𝑢 = 0,

𝑢 𝑥, 0 = 𝑥2 cos(𝜋𝑥), 𝑢 𝑡, −1 = 𝑢(𝑡, 1) (same for 𝑢𝑥).

■ Results for 𝜖 = 0.01 and 𝑓 𝑢 = 5(𝑢3 − 𝑢). Difficult to solve with 

PINN, re-sampling strategies (Wight & Zhao, 2020).

𝑡 = 0

𝑡 = 1

𝑁𝑗 = 2.5 104, Iter 2.105, 

4hl, 4n/l, tanh(. )
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Causality Aware PINNs

NTK method : We seek to minimize 𝜖 𝛉 =
1

𝑁
σ𝑖=1

𝑁 𝐿 𝑢𝛉 𝐱𝑖 , 𝑦𝑖 . 

The weights are obtained by solving (𝑡 = Iter):

𝛉′ 𝑡 = −
1

𝑁
σ𝑖 𝛻𝛉 𝑡 𝑢𝛉 𝑡 𝐱𝑖 𝛻𝑢𝐿(𝑢, 𝑦𝑖).

From 𝜕𝑡𝑢𝛉 𝑡 𝐱 = 𝛻𝛉 𝑡 𝑢𝛉 𝑡 𝐱
⟙

𝛉′ 𝑡 we get:

𝜕𝑡𝑢𝛉 𝑡 𝐱 = −
1

𝑁
σ𝑖 𝛻𝛉 𝑡 𝑢𝛉 𝑡 𝐱

⟙
𝛻𝛉 𝑡 𝑢𝛉 𝑡 𝐱𝑖

𝑘𝛉(𝐱,𝐱𝑖)

𝛻𝑢𝐿(𝑢, 𝑦𝑖).

For 𝑛1, … , 𝑛𝐿 → ∞ (1) 𝑘∞(𝐱, 𝐱𝑖) is deterministic at 𝑡 = 0 and (2) 

𝑘∞(𝐱, 𝐱𝑖) remains constant as 𝑡 increases.

For 𝐿 𝑢, 𝑦 = 𝑢 − 𝑦 2 we obtain 𝜕𝑡𝐘𝛉(𝑡) = 2/𝑁 𝐘 − 𝐘𝛉 𝑡 𝐊∞, 

where 𝐘𝛉(𝑡) 𝑖
= 𝑢𝛉(𝐱𝑖) and 𝐊∞ 𝑖𝑗 = 𝑘∞(𝐱𝑖 , 𝐱𝑗)

𝔼 𝐘𝛉 𝑡 = 𝐘(𝐈 − 𝑒−𝑡𝐊∞).

At 𝑡 = 0, an ensemble of wide NNs is a 

zero-mean GP; for 𝑡 > 0, the ensemble 

evolves according to the NTK.

𝑢𝜃 ∈ ℝ trained on inputs drawn from 𝑆1.

𝑢𝜃

⇒The larger 𝑢 ∈ Sp(𝐊∞) is, the faster the NN learns in the direction of the eigenvector.

26

𝑥 = 𝜙/2𝜋
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Kernel at time 𝑡 over points 𝐱𝒊

𝐊∞ 𝑡
𝑖𝑗

= 𝛻𝛉𝑅 𝑡, 𝐱𝑖
⟙𝛻𝛉𝑅 𝑡, 𝐱𝑗 .

Constant (as 𝑛𝑙 → ∞, ∀𝑙) during training, the rate of (exponential) 

convergence being (Wang et al., 2022):

𝐶 𝑡 =
tr(𝐊∞ 𝑡 )

𝑁𝐱
.

1/3 s

2/3 s

1 s

FB-PINN

# epochs 5.105Finite differences

𝐶(𝑡)

𝑡

𝑅 = 𝜕𝑡𝑡𝑢 − 1/𝑐2𝛻2𝑢 ⇨

Iter. 103

Iter. 104 et 105

Allen-Cahn Equation

𝜕𝑡𝑢 − 𝜖2𝜕𝑥𝑥𝑢 + 𝑓 𝑢 = 0⇨

Causality Aware PINNs
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Predictions
●○○○ A quick view on statistics


