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You get what you pay for
Millet ef al., ITW2023

Yield estimates (Beirut, 2020)

m Using Green’s functions of the L
wave equation (SEM3D) + signals. <§E

0.6 |-

[ | WS ~ VVIS with ERAS.

m Adding small-scale fluctuations
alters W;s by 0(10).

m Using a compressible flow solver
and videos of shock dynamics.
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Can data-driven techniques help?

m Limitations of ML in scientific modeling

m Most NNs (CNNSs) are not specifically designed for computing a
Green function or solving PDEs. g e N

7= CNN filters —

m Databases are often biased (small training set size N). Input: ¢(x), u(x)

m NNs are often over-parameterized (DOF> N), making them
excellent interpolators, but with limited extrapolation capabilities.
m Challenges and objectives

m Map multi-scale fields to waveforms and/or TLs despite spectral
bias, which can hinder accurate capture of fine-scale features:

NN: cerr(X) = u(x, t)

25s

Output: u(x, t)

m Ensure robust extrapolation for out-of-sample conditions, which is
essential for real-world applications and unexpected scenarios.
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Neural Operators
eocococo Kernel methods

m Intuition (t is ignored for simplicity)
m If G is the Green function of a parametric PDE, then:

u(x) = j 6(xy)f () dy.

m (G is modelled as a kernel kg defined by a NN with parameters 0:
G(x,y) = Kko(x,y, c(x), c(¥)).

m Neural Operator (NO)
m For any v:R¢ - R™, a NO is defined by

* Zongyi Li, Kovachki et al., 2021.

—_—
‘T

NO
20

Kov(x) = j Ko (x, y, c(X), c(y))v(y) dy. Waveforms
u(XJ_) t)
m Four variations: Graph NO, multipole GNO, low-rank NO and Fourier NO*, (x,,t) € R
m FNO (convolution kernel) Ke(x, y,c(x),c(y)) = kg(x —y) = Kgv(x) = kg * V.
Infrasound Technology Workshop, VIC, 2024 November 6, 2024 6



Neural Operators
ceooo Architecture
c(x) with x € R?
m Architecture v

(%) Uplift P
m The mapping is learnt iteratively: ( o )—>v0 = oV, > ux)

P %r F Lo l

m P is an uplift layer, Q is a projection layer and Fourier layers F

: F-Fourier
are defined by: v, = o;([W!+K(c)]v;_; + b)).
m Kernel (non-local) integral operators
m Assuming K is a convolution kernel, the convolution theorem v

leads to: F-Fourier

K(c)v = F 1(F(x) F(v))
R
m The weights (R € CV*M) are learnt inside each layer. /\

Proj. Qty, Proj. Qws
uxy, f) u(xy,t)

——

eR4
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Neural Operators
ocoeco FNO usage

m Training: leverage limited dataset by combining real
observations with synthetic data.

m Few real-world observations (~ 10?) form the foundation. We
augment this data with synthetic signals created via simulations.

s Data augmentation: for each event, 10?2 GW fields are generated
to produce 10% synthetic waveforms

= input-output pairs {c;, u;};_, with P ~ 10* (20% validation).
m Hybrid optimization (Rathore, ICML2024%).

m Datasets for evaluation

€ Sanity check: Idealized conditions for ¢; with ducting effects,
allowing model performance evaluation under simplified scenarios
and optimization of FNO layers (o, V and ).

® Real-world case: Dataset of waveforms recorded at 1S37 during
ammunition explosion campaigns in Hukkakero (2014—2024).

g Infrasound Technology Workshop, VIC, 2024

* https://arxiv.org/abs/2402.01868
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Neural operators
oooeo Validation on new profiles (case 0) R = ‘m ax

a
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m Spatial evolution of TL is well reproduced for various sound speed

ratios (from R<1toR> 1) Overparameterized
m Small-scale features are more difficult to predict. f
= 2 layers, N = 192 neurons and M = 80 modes =|6.10° parameters. ° "0 300 30 400
Eff. sound speed (m/s)
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Neural operators 1024

coooce On the # of modes 256

Impact of modes (48 neurons/layer, 4 layers)

600

m Main stratospheric arrivals are reproduced for
R > 1 unless M is too small = A, A,.

500

m The higher the # of modes, the smaller the
RMSE (4 vs 42 for R = 1.06) = B.

m Resolution invariance: (256 vs 1024 for
resolution of c.g(2), with M = 4%) = C,

R = 1.06 fr 'l ' '
— — - 200 v =
A, -

R =1.00 * 4' 100+ E _
IT l

R =0.88 0

M = 42 M = 4 0 50 . 100 150 O o
Retarded time (s) RMSE . 10~
Infrasound Technology Workshop, VIC, 2024 November 6, 2024 10

400 f

)
o
o

Listance (km)




ty waves
multiwave model

i
om

G
2. Ar::

nd Technology Workshop, VIC, 2024

11

November 6, 2024

Infrasou



Infrasound Technology Workshop, VIC, 2024

Modeling fluctuations
ecoo Basics on GWs

Eliassen-Palm flux and GW drag = F ~ direction of GW propagation.

" EP flux: __ = div(F) gives a force (/unit mass)
F o —pou'w’ [Pa]. acting on the mean flow.
» GW drag (GWD):
pda = d,F [m.st.day?].
Zonal-mean GWD*

Impact on the zonal-mean wind o ERAI (JJA) A=4msidt
— 64 i L/_/_/M\ff
/ ?: 1 3 .K_\J

o : ' sgn d,F > 0
sgn 0;F < 0 2 10 9, > 0= |l

100: _
R T r— : * Computed with a
A N % 1000 *———— GCM (LMDz)
m.s -90 -60 -30

November 6, 2024
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Modeling fluctuations
oceoo A multiwave model

General formalism for GWs

m Use a stochastic Fourier series of individual
monochromatic wave packets:

N (5@
(;I) _ Z C, <TJ )ei(kj.x—wjt),
— \T(2)
C;: intermittency coefficient.
m EP flux evolution is given by*:

Kk
Fj(Zl+1) — ——]@[QJZ(ZI)] min[P}'(Zl)e_MAZ rF}'C(Zl+1)]

@F; = 0 above critical levels (& = w — k;. u).
@ is reduced by diffusion.
€ is limited by that of a saturated wave.

g Infrasound Technology Workshop, VIC, 2024

* Ribstein, Millet, Lott, JAMES, 2022.

Random variables
= k;, @; and z; are random.

n ||K;|| ~ UCkmin, kmax), kmax related to Ax.
m Direction of k; ~ U(0,2m).
m Phase speed: ¢; ~ N(0,0,)

Ex.: Contribution of #j to Y; C?9,F; (GWD).
Oct., 45-75°N 70

60 1

Amplitude

- 50
saturation (€))

40 |
-~ 30

Effect of critical 20

levels (@) | 101

'IO.4

10.3

- o]

0 50 100 150
Ground-based phase speed (m-s)

11 0.2

|0.1
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Eff. Sound speed retrieval

Modeling fluctuations 1 o (Vo 2029
ooeo Hukkakero campaigns (@) 4% * i %i o | /9
i

m Variability & stochasticity
m GWs are characterized by intermittency which ‘9
IS subject to day-to-day variability.

m Each GW field introduces small-scale o 20
structures that pose significant challenges for o 0.85 08 0.05 i
neural networks to capture. Cefr(2)/Cefr(0)

an

50

m Training set -
m 113 events x 102 GW fields. £ 30 - | )
QL

m Mean atmospheric E .
specification: ERAS. ?;1 | I g

= Fine tuning is essential for < 1o .| .20 &
obtaining good convergence I'! F"lll
of the loss (MAE+MSE). :

(o]
O o o

(o]
o

Wm el
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Modeling fluctuations
ocooe Impact of GWs on TLs (@)

Cefr(2)
R = max ———
Strato Cefr(0)

1.04
© 26/08/2014
Lo, © 27/08/2014 o
' 19/08/2018 A
R 15/08/2015 ©
1.00 - w/o GWs - g -
™ O L) © 4, > O O Q y 'V
N & & & N & & N Q; o a 0.98
0%09 é@g? 0%00 0%09 oq’\fl’o o‘b@Q 0%09 0%09 oq’\qp QQ’OQ QQ’\’LQ
A S I SN S A
0.96
m GWsincrease cqf(2)/ces(0) in the stratosphere. -
1 1 1 1 1 1 1
m For R < 1, GWs introduce a bias in the TL statistics, causing —-100 —-90 -80 -70 -60 -—-50 -—40
the mean value to shift away from that obtained without GWs. TL (dB)
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Preliminary results

oo TL variability using a FNO-1D (@) 2454
8989 — —
— A — | Validation /test
TLat 0.5 Hz Training
-40 X
,FNO
20 dB P
-80 1N
Truth

m Dispersion (+0) due to GWs and day-to-day variability of TL at 1IS37
are correctly reproduced during training (6 yrs x 10 events/yr).

m Predictions for the last 4 years are associated with errors that
Increase over time, reaching a few dB, except for specific # of GWSs. =)

m 6 FNO layers with 128 neurons/layer, 64 modes. New frequencies
can be added using Qry.

Training is completed in less than 1h.

L 4
L

100 km

g Infrasound Technology Workshop, VIC, 2024 November 6, 2024 17



Preliminary results

oo Waveforms using a FNO-2D (©) Ref. (frequ. band 0.1-2 Hz)
New eff. sound speed profile

m Predictions in the shadow zone 200

m Diffraction in the shadow zone is effectively
reproduced overall with moderate N and M (64 and 8,
resp. = 1.8 10° dof). ool

m But too much complexity! The small size of the
dataset (10%) limits efficient learning of GW-IS S0 .
interactions at the smallest wavelengths. ” 1

150 g

200

m Variability & stochasticity

150 g

m Scaling invariance: to minimize memory space, the
training is conducted with signals of size 512, while
validation is performed on oversampled signals (1024).

m Stability: by reducing M, the number of parameters sl W =64, M =8|

can be decreased, allowing the training to be 50 100 150 200 250 300
completed in a few hours (training size of 10%). Retarded time (s)

100 F

Distance (km)
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Conclusion tarxiv: 220307404
Multiple-Input FNO (arxiv: 2404.10115
o take-home messages Pre=inp ( )

: - — dtruth == MIFNO
= Homogeneity and stability Eikaakb
m FNOs capture the influence of underlying patterns on :‘é’: 101
waveforms and TLs across varying distances and time s 0 SN
scales with a same architecture. ~' —10 7 | y=0.15km (EIG=5-9: PG=7-I9)
m Unlike PINNs, FNOs maintain stability without violating - 104
causality!, making them a robust choice for long-range E o _J\/.,.,W —
wave propagation. & —10 A y=2.55km (EG=7.7; PG=8.7)
m Adaptability to new data % 10-
: : : S i
s FNOs generate solutions with accuracy that scales with the & 9 —‘/\A/N\“‘V“‘f
number of modes and is independent of discretization. = —101 _y=>5.25km (EG=8.2; PG=3.0)
m Source-dependence can be taken into account?. - 104
. o 5 0
m Perspective: large-scale validation, involving out-of- & —10 1 y=7.95km (EG=8.9; PG=0.4)
distribution GW fields (intermittency) = challenge: CPU costs ; ’ . :
associated with building waveforms datasets. Time (s)

g Infrasound Technology Workshop, VIC, 2024 November 6, 2024 19



= Source characterization using interpretable dynamic GNN
CM, X. Cassagnou, M. Mougeot

= Bayesian inference using neural operators
E. Noélé, CM, F. Lehmann

HPC Workshop for Nuclear Explosion Monitoring

3 — 5 December 2024
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U-FNO for deep learning of seismic waves

Architecture 64 X 64 X 128
1<t<74
) Uy Ugp Uz
Parameters of_U FNO Q64 X 64 X 64
m 8 (4+4) Fourier layers F, two fully-connected layers for P, O, O, and I T T
(projection operators for E-W, N-S and vertical displacements)

= Physical dimensions are \ in the encoder (643 to 8%) and / in the

decoder (83 to 642 x 128).
t

Test Case —— training loss
—-== validation loss
= a: S-wave velocity field in a 9.63 km3 cube (a = matrices 643) 10-2 1
obtained from adding von Karman random fields in layers. 6 10-2

m u. SEM3D using hexahedral mesh with elements of size 300 m gx10-3
(f. = 5 Hz). Seismic source (moment tensor) is placed in the
middle of the bottom layer. 256 virtual sensors equally spaced
atz = 0.

s Computational cost : 3.10* x 50 min (64 CPUs) for SEM3D and
11 h (4 Nvidia A100 GPUs) for training of the U-FNO. 5x 1073 &

7 %1073 1

6x 1073 ;




U-FNO for deep learning of seismig.
Results (arxiv 2304.19242)
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m The U-FNO can learn the

relationship btw. c¢(z) and p(t).

m Good generalization.
= No gap btw. the

WW

FNO vs NM °

Sample - reéceiver 1

—— Ground truth
—— Predicted

T
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1000
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T T T T
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Parameters of FNO

m 4 or 6 Fourier layers F, two fully-connected
, 48 neurones/layer.

layers for P and

m U-FNO: Physical dimensions are \ in the

encoder (x 1071) and ~ in the decoder.

Test cases = @), ©

= INPUT: ¢(x, z) is given by a matrix (1002 for
€@ and 256 x 31 for €)
simplified models (GMM, Waxler et al., 2008).

s OUTPUT: waveforms are computed with a
normal mode-based technique. Source at 1

) obtained using

km: Kinney model with f,.

= Comput. cost for training: 45 min for € (1500
profiles) and 2 h for €) (4000). Pred.:1 ms.

120 ©—
f 0o — 025 HZ )
100 B .;'-':5::?}
~ 80 [
= 5\
=3 N\
N 60 \ aVs(2)
= AN
|
40 f /
|":'?l
20 _ III:II'\ |||I
I\':-{‘l‘. l'l".,
%{
0 =
200 300 400

c (m.s?)

1000 —&)

fO =18 HZ
800 |
~
c 600
N
N av;(z)
400 | - > |
200 |
G L. i
340 350 360
c (m.s?)

Random a (nocturnal or
stratospheric jet).
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Causality Aware PINNs

0.0
t =0
Loss function (general case) )
= For a system of Q PDEs F;(u; 1) = 0 (with u € R?) T 0
Q_v0 |LvNi ¢vNe 2
€= L= [N_jzi=1 2k=1 Ejik] 1.0
. —1 0 1
with €ji = Tj(u(xi, tk); /1) T
m The residuals at t;,; are minimized even if the prediction at t; and 1
previous times are inaccurate — violates temporal causality.
lllustrative example iﬁ 0
= 1D Allen Cahn equation: =
deu — €20,,u+ f(u) =0, . |
u(x,0) = x?% cos(mx), u(t,—1) = u(t, 1) (same for u,). 1 0 1
i

m Results for e = 0.01 and f(u) = 5(u® — ). Difficult to solve with

_ 4 5
PINN, re-sampling strategies (Wight & Zhao, 2020). N; = 2.5 107, lter 2.10°,
4hl, 4n/l, tanh(.)

25



Causality Aware PINNs

... 1 ) .
NTK method : We seek to minimize €(8) = %L, L(ug(x"), ¥").
The weights are obtained by solving (t = Iter):

/ 1 . .
0'(t) = — - X; Vouen) (X') Ml (w, y).
T
From 6tu9(t) (X) = (Ve(t)ue(t) (X)) Bl(t) we QEtZ

) T | .
atu(-)(t) (x) = —;Zi (Ve(t)ue(t)(x)) Voo Ue(t) (Xl) V.L(u,yh).
ke (x,x1)

For ng,..,n; = o (1) ke (%,x%) is deterministic at t = 0 and (2)
k. (x,x") remains constant as t increases.

]

For L(u,y) = (u — y)? we obtain 9, Yey = 2/N(Y — Yo ) Ko,
where (Yﬁ(t))l- = up(x)) and (Ko)ij = koo (X, x/)

E[Ygp)| = Y(I — e~ tKe),

NTK describes NN evolution

NN ensemble ¢ t=0
571 —— NTK mean estimator
0 ° °
™
-5 - °
0.0 02 04 0.6 0.8 1.0
x=q¢/2n

At t = 0, an ensemble of wide NNs is a

zero-mean GP; fort > 0,

the ensemble

evolves according to the NTK.
ug € R trained on inputs drawn from S*.

=The larger u € Sp(Ky) is, the faster the NN learns in the direction of the eigenvector.
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Causality Aware PINNs

Kernel at time t over points x;

(Kw(t))ij = VeR(t, Xl')TVGR(t, X])

Constant (as n; — oo, V1) during training, the rate of (exponential)

convergence being (Wang et al., 2022).

tr(Ko, (¢))
_ C(t) = .
Allen-Cahn Equation Ny
deu — €20, u+ f(u)=0
—& Iter. et 10°
1 lter. 103
C(t)
3.
B 1 model
w2 overlapping models
5] 4 overlapping models
w8 overlapping models
— _ 2172 |
0.00 025 050 075  1.00 R=0nu—1/c"Vu =

Finite differences

1/3 s

Q

2/3's

C

FB-PINN

# epochs 5.10°

O
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T
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0
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-10 0 10
-10 0 10

0.1
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Predictions
ecoo A quick view on statistics
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