

ITW 2024 Session: Modeling and network processing

Learning long-range infrasound propagation using neural operators

Christophe Millet^{1,2}, Fanny Lehmann³ Elodie Noëlé²

¹ENS Paris-Saclay, 91190 Gif-sur-Yvette, France ²CEA, DAM, DIF, 91297 Arpajon, France ³ ETH AI Center, ETH Zürich, Swiss

You get what you pay for Millet et al., ITW2023

Yield estimates (Beirut, 2020)

- Using Green's functions of the wave equation (SEM3D) + signals.
	- $W_{\rm S} \sim W_{\rm IS}$ with ERA5.
	- Adding small-scale fluctuations alters W_{IS} by $O(10)$.
- Using a compressible flow solver and videos of **shock dynamics**.

PDF

Can data-driven techniques help?

■ Limitations of ML in scientific modeling

■ Most NNs (CNNs) are not specifically designed for computing a **Green function** or solving PDEs.

- Databases are often **biased** (small training set size N).
- NNs are often **over-parameterized** (DOF \gg N), making them excellent interpolators, but with limited extrapolation capabilities.

■ **Challenges and objectives**

■ Map multi-scale fields to waveforms and/or TLs despite spectral bias, which can hinder accurate capture of fine-scale features:

NN: $c_{\text{eff}}(\mathbf{x}) \mapsto u(\mathbf{x},t)$

■ Ensure robust extrapolation for out-of-sample conditions, which is essential for real-world applications and unexpected scenarios.

Neural Operators Basics and intuition 1

Neural Operators ●○○○○ Kernel methods

* Zongyi Li, Kovachki *et al*., 2021.

- **Intuition** (*t* is ignored for simplicity)
	- **If** \overline{G} is the Green function of a parametric PDE, then:

$$
u(\mathbf{x}) = \int G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \, \mathrm{d}\mathbf{y}.
$$

■ *G* is modelled as a kernel κ_{θ} defined by a NN with parameters θ :

 $G(\mathbf{x}, \mathbf{y}) \simeq \kappa_{\theta}(\mathbf{x}, \mathbf{y}, c(\mathbf{x}), c(\mathbf{y})).$

- **Neural Operator** (NO)
	- For any \mathbf{v} : $\mathbb{R}^d \to \mathbb{R}^m$, a NO is defined by

$$
\mathbf{K}_{\theta}\mathbf{v}(\mathbf{x}) = \int \kappa_{\theta}(\mathbf{x}, \mathbf{y}, c(\mathbf{x}), c(\mathbf{y})) \mathbf{v}(\mathbf{y}) d\mathbf{y}.
$$

- Four variations: Graph NO, multipole GNO, low-rank NO and **Fourier NO**^{*}.
- **FNO** (convolution kernel) $\kappa_{\theta}(\mathbf{x}, \mathbf{y}, c(\mathbf{x}), c(\mathbf{y})) = \kappa_{\theta}(\mathbf{x} \mathbf{y}) \Rightarrow \mathbf{K}_{\theta} \mathbf{v}(\mathbf{x}) = \kappa_{\theta} * \mathbf{v}$.

Waveforms

 $\mathcal{F}_{0}^{(n)}$ −1

 $u(\mathbf{x}_{\perp},t)$

 $(\mathbf{x}_{\perp},t) \in \mathbb{R}^d$

Neural Operators ○●○○○ Architecture

■ **Architecture**

- **■** The mapping is learnt iteratively: $\binom{c(\mathbf{x})}{\mathbf{x}}$ $\mathbf x$ \Rightarrow \overrightarrow{P} $\mathbf{V}_0 \rightarrow$ $\overrightarrow{F_1} \cdots \overrightarrow{F_L} \mathbf{V}_L \stackrel{\rightarrow}{Q}$ $u(\mathbf{x}%)=\sum_{i=1}^{n}(a_{i}\mathbf{x}_{i})^{T}$
- **P** is an uplift layer, Q is a projection layer and Fourier layers F_l are defined by: $\mathbf{v}_l = \sigma_l([\mathbf{W}^l + \mathbf{K}(c)]\mathbf{v}_{l-1} + \mathbf{b}^l)$.
- Kernel (non-local) integral operators
	- **EXECUTE:** Assuming K is a convolution kernel, the convolution theorem leads to:

$$
\mathbf{K}(c)\mathbf{v} = \mathcal{F}^{-1}(\underbrace{\mathcal{F}(\mathbf{\kappa})}_{\mathbf{R}}\mathcal{F}(\mathbf{v}))
$$

The weights (R $\in \mathbb{C}^{N \times M}$) are learnt inside each layer.

Fourier filters

W

Neural Operators ○○●○○ FNO usage

- **Training: leverage limited dataset by combining real observations with synthetic data.**
	- Few real-world observations ($\sim 10^2$) form the foundation. We augment this data with synthetic signals created via simulations.
	- **Data augmentation:** for each event, 10² GW fields are generated to produce $10²$ synthetic waveforms
		- ⇒ input-output pairs $\{c_i, u_i\}_{i=1}^P$ with $P \sim 10^4$ (20% validation).
	- **Hybrid optimization** (Rathore, ICML2024^{*}).

Datasets for evaluation

- \bullet **Sanity check**: Idealized conditions for c_i with ducting effects, allowing model performance evaluation under simplified scenarios and optimization of FNO layers $(\sigma, N \text{ and } M)$.
- ❷**Real-world case:** Dataset of waveforms recorded at IS37 during ammunition explosion campaigns in Hukkakero (2014–2024).

* <https://arxiv.org/abs/2402.01868>

Neural operators ○○○○● On the # of modes

Impact of modes (48 neurons/layer, 4 layers**)**

- Main stratospheric arrivals are reproduced for $R \geq 1$ unless M is too small \Rightarrow **A**₁, **A**₂.
- \blacksquare The higher the # of modes, the smaller the RMSE (4 vs 4^2 for $R = 1.06$) \Rightarrow **B**.
- **Resolution invariance:** (256 vs 1024 for resolution of $c_{\text{eff}}(z)$, with $M = 4^2$) \Rightarrow **C**.

æz

Modeling fluctuations ●○○○ Basics on GWs

Eliassen-Palm flux and GW drag

EP flux:

$$
\mathbf{F} \propto -\rho_0 \overline{\mathbf{u}'w'} \text{ [Pa]}.
$$

GW drag (GWD):

 $\rho \partial_t \overline{\mathbf{u}} = \partial_z \mathbf{F}$ [m.s⁻¹.day⁻¹].

- $\textbf{F} \sim$ direction of GW propagation.
- \blacksquare div(**F**) gives a force (/unit mass) acting on the mean flow.

Modeling fluctuations *** Ribstein, Millet, Lott, JAMES, 2022.** ○●○○ A multiwave model

General formalism for GWs

■ Use a stochastic Fourier series of individual monochromatic wave packets:

$$
\begin{pmatrix} \mathbf{u}' \\ T' \end{pmatrix} = \sum_{j=1}^J C_j \begin{pmatrix} \widehat{\mathbf{u}}_j(z) \\ \widehat{T}_j(z) \end{pmatrix} e^{i(\mathbf{k}_j \cdot \mathbf{x} - \omega_j t)},
$$

C_j : intermittency coefficient.

EP flux evolution is given by*:

$$
\mathbf{F}_j(z_{l+1}) = -\frac{\mathbf{k}_j}{k_j} \underbrace{\Theta[\hat{\omega}_j^2(z_l)]}_{\mathbf{O}} \min[F_j(z_l) e^{-\mu \Delta z}, F_j^c(z_{l+1})]
$$

$$
\bullet \mathbf{F}_j = \mathbf{0} \text{ above critical levels } (\hat{\omega} = \omega - \mathbf{k}_j, \mathbf{u}).
$$

- ❷is reduced by diffusion.
- **3** is limited by that of a saturated wave.

Random variables

- **k**_j, $\widehat{\omega}_j$ and z_j are random.
	- $\|\mathbf{k}_i\| \sim U(k_{\min}, k_{\max})$, k_{\max} related to Δx .
	- Direction of ${\bf k}_i \sim U(0, 2\pi)$.
	- Phase speed: $c_i \sim N(0, \sigma_c)$

Ex.: Contribution of #*j* to $\sum_i C_i^2 \partial_z \mathbf{F}_i$ (GWD).

Modeling fluctuations ○○●○ Hukkakero campaigns (❷)

■ Variability & stochasticity

- GWs are characterized by intermittency which is subject to **day-to-day** variability.
- Each GW field introduces small-scale structures that pose significant challenges for neural networks to capture. 50

40

20

 $10 -$

■ **Training set**

- (m/s) 113 events \times 10² GW fields. 30
- Mean atmospheric specification: ERA5.
- Amplitude ■ Fine tuning is essential for obtaining good convergence of the loss (MAE+MSE).

Modeling fluctuations ○○○● Impact of GWs on TLs (❷)

W

Preliminary results TLs and waveforms 3

Preliminary results ●○ TL variability using a FNO-1D (2)

- Dispersion ($\pm \sigma$) due to GWs and day-to-day variability of TL at IS37 are correctly reproduced during training (6 yrs \times 10 events/yr).
- Predictions for the last 4 years are associated with errors that increase over time, reaching a few dB, except for specific # of GWs.
- 6 FNO layers with 128 neurons/layer, 64 modes. New frequencies can be added using Q_{TL} .

Training is completed in less than 1h.

20 dB

100 km

2454

Preliminary results ○● Waveforms using a FNO-2D (❷)

■ **Predictions in the shadow zone**

- Diffraction in the shadow zone is effectively reproduced overall with moderate N and M (64 and 8, resp. \Rightarrow 1.8 10⁶ dof).
- **But too much complexity!** The small size of the dataset $(10⁴)$ limits efficient learning of GW-IS interactions at the smallest wavelengths.

■ Variability & stochasticity

- **Scaling invariance**: to minimize memory space, the training is conducted with signals of size 512, while validation is performed on oversampled signals (1024).
- Stability: by reducing M, the number of parameters can be decreased, allowing the training to be completed in a few hours (training size of $10⁴$).

Conclusion ● take-home messages

■ **Homogeneity and stability**

- **FNO**s capture the influence of underlying patterns on waveforms and TLs across varying distances and time scales with a **same architecture**.
- Unlike **PINN**s, FNOs maintain stability without violating causality¹, making them a robust choice for long-range wave propagation.

■ **Adaptability to new data**

- FNOs generate solutions with accuracy that scales with the number of modes and is independent of discretization.
- Source-dependence can be taken into account².
- **Perspective:** large-scale validation, involving out-ofdistribution GW fields (intermittency) \Rightarrow challenge: CPU costs associated with building waveforms datasets.

¹arxiv: 2203.07404 **²M**ultiple-**I**nput **FNO** (arxiv: 2404.10115)

 $W(\bullet)$

- \Rightarrow Source characterization using interpretable dynamic GNN CM, X. Cassagnou, M. Mougeot
- \Rightarrow Bayesian inference using neural operators E. Noëlé, CM, F. Lehmann

HPC Workshop for Nuclear Explosion Monitoring

3 – 5 December 2024

[christophe.millet@lmd.ipsl.fr](mailto:Christophe.millet@lmd.ipsl.fr)

christophe.millet@cea.fr **Any questions?**

U-FNO for deep learning of seismic waves

Parameters of U-FNO

- **8 (4+4) Fourier layers F, two fully-connected layers for P,** $Q_{\rm E}$ **,** $Q_{\rm N}$ **and** $Q_{\rm z}$ (projection operators for E-W, N-S and vertical displacements)
- **Physical dimensions are** in the encoder (64³ to 8³) and \ge in the decoder (8^3 to $64^2 \times 128$). t

Test case

- **a**: S-wave velocity field in a 9.6³ km³ cube ($a =$ matrices 64³) obtained from adding von Karman random fields in layers.
- \blacksquare u: SEM3D using hexahedral mesh with elements of size 300 m $(f_c = 5$ Hz). Seismic source (moment tensor) is placed in the middle of the bottom layer. 256 virtual sensors equally spaced at $z=0$.
- Computational cost : $3.10^4 \times 50$ min (64 CPUs) for SEM3D and 11 h (4 Nvidia A100 GPUs) for training of the U-FNO.

Architecture 64 × 64 × 128

 $a: 64 \times 64 \times 64$

 $1 \le t \le 7.4$

 u_N ^{- u_E} u_Z

Parameters of FNO

- 4 or 6 Fourier layers **F**, two fully-connected layers for **P** and Q , 48 neurones/layer.
- U-FNO: Physical dimensions are \angle in the encoder (\times 10⁻¹) and \nearrow in the decoder.

Test cases ⇨ **❷, ❸**

- **INPUT**: $c(x, z)$ is given by a matrix $(100^2$ for **❷** and 256 × 31 for **❸**) obtained using simplified models (GMM, Waxler *et al*., 2008).
- **OUTPUT**: waveforms are computed with a normal mode-based technique. Source at 1 km: Kinney model with f_0 .
- Comput. cost for training: 45 min for ² (1500 **profiles)** and 2 h for **❸ (4000)**. Pred.:**1 ms.**

$\partial_t u - \epsilon^2 \partial_{xx} u + f(u) = 0,$ $u(x, 0) = x^2 \cos(\pi x), u(t, -1) = u(t, 1)$ (same for u_x).

Results for $\epsilon = 0.01$ and $f(u) = 5(u^3 - u)$. Difficult to solve with PINN, re-sampling strategies (Wight & Zhao, 2020).

Causality Aware PINNs

Loss function (general case)

1D Allen Cahn equation:

■ For a system of Q PDEs $\mathcal{F}_i(\mathbf{u}; \lambda) = 0$ (with $\mathbf{u} \in \mathbb{R}^Q$)

$$
\epsilon^{\Omega} = \sum_{j=1}^{Q} \left[\frac{1}{N_j} \sum_{i=1}^{N_j} \sum_{k=1}^{N_k} \epsilon_{jik}^{2} \right]
$$

with
$$
\epsilon_{ji} = \mathcal{F}_j(\mathbf{u}(\mathbf{x}_i, t_k); \lambda)
$$

■ The residuals at t_{k+1} are minimized even if the prediction at t_k and previous times are inaccurate \rightarrow violates temporal causality.

Illustrative example

 0.0

 $\boldsymbol{u}(t,x)$

 \Rightarrow 0

Causality Aware PINNs

NTK method : We seek to minimize $\epsilon(\theta) = \frac{1}{N}$ $\frac{1}{N}\sum_{i=1}^N L(u_{\theta}(\mathbf{x}^i), y^i).$ The weights are obtained by solving $(t = \text{Iter})$: $\theta'(t) = -\frac{1}{N}$ $\frac{1}{N} \sum_i \nabla_{\theta(t)} u_{\theta(t)}(\mathbf{x}^i) \nabla_{\!u} L(u, y^i).$ u_{θ}

From $\partial_t u_{\theta(t)}(\mathbf{x}) = \bigg(\nabla_{\theta(t)} u_{\theta(t)}(\mathbf{x}) \bigg)$ ⟙ $\theta'(t)$ we get: $\partial_t u_{\theta(t)}(\mathbf{x}) = -\frac{1}{N}$ $\frac{1}{N} \sum_i \Big(\nabla_{\boldsymbol{\theta}(t)} u_{\boldsymbol{\theta}(t)}(\mathbf{x})$ Τ $\nabla_{\boldsymbol{\theta}(t)} u_{\boldsymbol{\theta}(t)}(\mathbf{x}^i) \nabla_{\!u} L(u, y^i).$ $k_{\theta}(\mathbf{x}, \mathbf{x}^i)$

For $n_1, ..., n_L \to \infty$ (1) $k_{\infty}(\mathbf{x}, \mathbf{x}^i)$ is **deterministic** at $t = 0$ and (2) $k_{\infty}(\mathbf{x},\mathbf{x}^i)$ remains **constant** as t increases.

For
$$
L(u, y) = (u - y)^2
$$
 we obtain $\partial_t Y_{\theta(t)} = 2/N(Y - Y_{\theta(t)})K_{\infty}$,
where $(Y_{\theta(t)})_i = u_{\theta}(x^i)$ and $(K_{\infty})_{ij} = k_{\infty}(x^i, x^j)$

$$
\mathbb{E}[Y_{\theta(t)}] = Y(I - e^{-tK_{\infty}}).
$$

NTK describes NN evolution NN ensemble $t=0$ 5 NTK mean estimator -5 0.0 0.2 0.4 0.6 0.8 1.0 $x = \phi/2\pi$

At $t = 0$, an ensemble of wide NNs is a zero-mean GP; for $t > 0$, the ensemble evolves according to the NTK.

 $u_\theta \in \mathbb{R}$ trained on inputs drawn from $S^1.$

 \Rightarrow The larger $u \in Sp(K_{\infty})$ is, the faster the NN learns in the direction of the eigenvector.

Causality Aware PINNs

Kernel at time t **over points** x_i

$$
(\mathbf{K}_{\infty}(t))_{ij} = \nabla_{\theta} R(t, \mathbf{x}_i)^{\top} \nabla_{\theta} R(t, \mathbf{x}_j).
$$

Constant (as $n_l \rightarrow \infty$, $\forall l$) during training, the rate of (exponential) convergence being (Wang *et al*., 2022):

1/3 s

Finite differences $\frac{\text{# epochs } 5.10^5}{\frac{10}{25}}$

5

0

 -5

 $-10 -10$ FB-PINN

0

 0.1

 0.0

 -0.1

10

Predictions ●○○○ A quick view on statistics

