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■ Context
■ Detection capability highly variable (e.g. Green and Bowers, 2010) 

using AFTAC scaling relation & climatology
■ A semi-empirical attenuation relation (Le Pichon et al., 2012)

o Massive PE simulations
o Wide range of atmospheric scenarios BUT idealized
o Limited range of stratospheric wind strength
o Limited propagation range

■ Objectives
■ Extend transmission loss (TL) predictions up to 4,000 km
■ Incorporate realistic atmospheric specifications 
■ Account for the multiple waveguides (stratospheric + MLT ducted 

waves)
■ Assess the spatio-temporal variability of the IMS network 

performance using a Bayesian framework

Green and Bowers, 2010

Objectives

2



Infrasound Technology Workshop, November 4-8, 2024, Vienna

■ Generate statistics of the atmosphere using 
historical NWP models 

■ Vertical temperature / zonal / meridional winds 
extracted with WACCM specifications (Whole 
Atmosphere Community Climate Model)

■ Quantify atmospheric perturbation statistics: 
database parameterized using Empirical 
Orthogonal Function (EOF) decomposition 
(Assink, 2014)

■ Probability distribution functions are obtained 
using the first 10 EOF coefficients
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Atmospheric dataset
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■ Build multi-year database of temperature and wind 
models at IMS stations (2003-2020, 53 stations)

■ z ∈ [0; 120] km altitude

■ Construct different classes of effective sound speed 
(ceff) ratios representing the variability of the 
stratospheric ducts (30-70 km)

■ For each sample: incorporate 2D range dependent 
spectral model of wind perturbations (Gardner, 1993)

■ PE* propagation modeling at: 0.1 - 3.2 Hz

 23 ceff x 100 samples x 10 GW x 10 frequencies = 230,000

*ePape parabolic equation numerical solver
National Center for Physical Acoustics (Assink and Waxler, 2019)

Wind perturbation (m/s) Perturbed ceff

Atmospheric dataset
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■ Non-linear curve-fitting of simulated TLs [ceff x f] (Coleman, 1996) 

■ Physical approach: attenuation relation accounting for geometrical spreading, 
dissipation and scattering (Lay and Wallace, 1995)

■ Tabulated parameters: 𝛼, 𝑎𝑠, 𝑑𝑠 , 𝑅𝑠 , 𝛽 vs. effective sound speed ratio and frequency

■ For [ceff x f x r]: 𝑻𝑳 and 𝑻𝑳

𝑇𝐿 𝑓, 𝑟, 𝑐𝑒𝑓𝑓 = 𝑅
−𝛼 1+𝑎𝑠 1−cos 2𝜋

𝑟
𝑑𝑠

𝑒
−
𝑟
𝑅𝑠

× 𝑒−𝛽𝑟

Multi-dimensional curve-fitting

Geometrical spreading

Geometrical shadow zones

Attenuation and scattering



Multi-dimensional curve-fitting
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Multi-dimensional curve-fitting

Upwind Downwind

■ Curve fitting provides TL estimates with errors lower than 
~10 dB downwind and ~20 dB upwind

Downwind

Upwind

Downwind

Upwind

0.1 Hz

1.6 Hz

PE simulations Predictions
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■ Near source spectral amplitude (in dB, Pa/Hz) (Kinney and Graham, 1985; Blom et al., 2018)

■ Propagation-based probability distribution of the source spectral amplitude at the receiver

■ Probability that the noise at the station has a spectral amplitude less than or equal to that of the arrival signal

■ Cumulative distribution of the noise statistics  

■ Probability distribution of the effective noise (Pa/Hz)

 Calculate the 90% probability for detecting explosive yield

𝑃𝐾𝐺_𝑑𝐵 𝑊𝐽, 𝑓, 𝑟

𝜌𝑎𝑟𝑟 𝑊𝐽, 𝑓, 𝑟, 𝑐𝑒𝑓𝑓𝑟 =
1

𝜎𝑇𝐿(𝑓, 𝑟, 𝑐𝑒𝑓𝑓𝑟) 2𝜋
× 𝑒

−
1
2

𝑃−𝑃𝐾𝐺𝑑𝐵(𝑊𝐽,𝑓,𝑟)−𝜇𝑇𝐿(𝑓,𝑟,𝑐𝑒𝑓𝑓𝑟)

𝜎𝑇𝐿(𝑓,𝑟,𝑐𝑒𝑓𝑓𝑟)
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𝜌𝑑𝑒𝑡 𝑊𝐽, 𝑓, 𝑟, 𝑐𝑒𝑓𝑓𝑟 , 𝑁 = න𝜌𝑎𝑟𝑟 𝑊𝐽, 𝑓, 𝑟, 𝑐𝑒𝑓𝑓𝑟 × 𝑅𝑛𝑠 𝑃, 𝑓, 𝑟, 𝑁 𝑑𝑃

𝑅𝑛𝑠 𝑃, 𝑓, 𝑟, 𝑁 = න
−∞

𝑃

𝜌𝑛𝑠 𝑃′, 𝑓, 𝑟, 𝑁 𝑑𝑃′

Network performance simulation

A Bayesian framework (Blom et al., 2023)

𝜌𝑛𝑠 𝑓, 𝑟, 𝑁
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■ PSDs calculated on continuous IMS records

■ 53 certified stations

■ 2021, 2022, 2023

■ Hourly basis

■ Hanning, 300 s window length

■ PSD and PSD derived from PSDs at all array elements 

Noise statistics

Green and Nippress, 2019

Probability distribution of the effective noise 

■ t(r): wavetrain duration

■ N: number of array elements
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Dataset: input data
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Dataset: input data
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Dataset: input data
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Dataset: input data
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Dataset: input data
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Global simulations (WACCM 3h)
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Global simulations (WACCM 3h)
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■ Global simulation with real noise
■ One station coverage: 100 – 800 t TNT 
■ 100 t threshold is achieved for 75% earth coverage
■ (Sub-)seasonal variations: one order of magnitude

(90% probability, 95% coverage)

Green and Bower, 2010
Uniform noise at 0.02 Pa  120 – 210 t
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Global simulations at 2 and 14 UTC
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■ Results
■ A Bayesian framemork: from the source to the receiver
■ Updated attenuation relation; station noise measures
■ Highly variable thresholds: from season to hourly scales
■ One station coverage: 100 – 800 t TNT
■ Applications: near-real time assessment of the spatio-temporal 

variability of the IMS network performance; MA diagnostics using GT,                   
civil applications (e.g. volcanoes)

■ Perspectives
■ Perform sensitivity studies on middle-atmospheric fine structures                                     

(Drob et al., 2013; Vorobeva et al., 2023)
■ Validation through comparisons with observations
■ New approaches based on ML techniques are being explored 

(Brissaud et al. 2022; Cameijo, ITW24)

Summary / perspectives


