cea

Bundesanstalt für Geowissenschaften und Rohstoffe

> 120°W 60°W $60^{\circ}E$ $120^\circ F$ Pref @1km [Pa pp]

> > 500 1000 200

Statistical models for infrasonic propagation: application to the detection capability of the IMS network

BGR

Alexis LE PICHON¹, Constantino LISTOWSKI¹, Julien VERGOZ¹ Patrick HUPE², Lars CERANNA²

¹ CEA, DAM, DIF, F-91680, Arpajon, France ² BGR, B4.3, D-30655 Hannover, Germany

Infrasound Technology Workshop, November 4-8, 2024, Vienna

Objectives

■ **Context**

- Detection capability highly variable (e.g. Green and Bowers, 2010) using AFTAC scaling relation & climatology
- A semi-empirical attenuation relation (Le Pichon et al., 2012)
	- o Massive PE simulations
	- o Wide range of atmospheric scenarios BUT idealized
	- o Limited range of stratospheric wind strength
	- o Limited propagation range

■ **Objectives**

cea

- Extend transmission loss (TL) predictions up to 4,000 km
- Incorporate realistic atmospheric specifications
- Account for the multiple waveguides (stratospheric + MLT ducted waves)
- Assess the spatio-temporal variability of the IMS network performance using a Bayesian framework

Atmospheric dataset

- Generate statistics of the atmosphere using historical NWP models
- Vertical temperature / zonal / meridional winds extracted with WACCM specifications (Whole Atmosphere Community Climate Model)
- Quantify atmospheric perturbation statistics: database parameterized using Empirical Orthogonal Function (EOF) decomposition (Assink, 2014)
- Probability distribution functions are obtained using the first 10 EOF coefficients

cea

Atmospheric dataset

- Build multi-year database of temperature and wind models at IMS stations (2003-2020, 53 stations)
	- \bullet z \in [0; 120] km altitude

 $C22$

- Construct different classes of effective sound speed (ceff) ratios representing the variability of the stratospheric ducts (30-70 km)
- For each sample: incorporate 2D range dependent spectral model of wind perturbations (Gardner, 1993)
- PE* propagation modeling at: 0.1 3.2 Hz
- \rightarrow 23 ceff x 100 samples x 10 GW x 10 frequencies = 230,000

**ePape* parabolic equation numerical solver National Center for Physical Acoustics (*Assink and Waxler, 2019*)

Cratio

Multi-dimensional curve-fitting

- Non-linear curve-fitting of simulated TLs [ceff x f] (Coleman, 1996)
- Physical approach: attenuation relation accounting for geometrical spreading, dissipation and scattering (Lay and Wallace, 1995)
- \blacksquare Tabulated parameters: α , a_s , d_s , R_s , β vs. effective sound speed ratio and frequency

Multi-dimensional curve-fitting

Multi-dimensional curve-fitting

■ Curve fitting provides TL estimates with errors lower than ~10 dB downwind and ~20 dB upwind

Network performance simulation A Bayesian framework (Blom et al., 2023)

Near source spectral amplitude (in dB, Pa/Hz) (Kinney and Graham, 1985; Blom et al., 2018)

 $\overline{P_{KG_dB}(W_J, f, r)}$

Propagation-based probability distribution of the source spectral amplitude at the receiver

$$
\rho_{arr}(W_J, f, r, c_{effr}) = \frac{1}{\sigma_{TL}(f, r, c_{effr})\sqrt{2\pi}} \times e^{-\frac{1}{2}\left(\frac{P \cdot (P_{KG_{dB}}(W_J, f, r) \cdot (\mu_{TL})f, r, c_{effr})}{\sigma_{TL}(f, r, c_{effr})}\right)^2}
$$

Probability that the noise at the station has a spectral amplitude less than or equal to that of the arrival signal

$$
\rho_{det}(W_J, f, r, c_{effr}, N) = \int \rho_{arr}(W_J, f, r, c_{effr}) \times R_{ns}(P, f, r, N) dP
$$

Cumulative distribution of the noise statistics

$$
R_{ns}(P,f,r,N) = \int_{-\infty}^{P} \rho_{ns}(P',f,r,N) dP'
$$

Probability distribution of the effective noise (Pa/Hz)

$$
\rho_{ns}(f,r,N)
$$

→ Calculate the 90% probability for detecting explosive yield

Noise statistics

- PSDs calculated on continuous IMS records
- 53 certified stations
- 2021, 2022, 2023
- Hourly basis

 $Q2$

- Hanning, 300 s window length
- **PSD** and **PSD** derived from PSDs at **all array elements**

Probability distribution of the effective noise

$$
\rho_{ns}(f, r, N) = \frac{1}{\sigma_{PSD}\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{P - \mu_{PSD}(f, r, N)}{\sigma_{PSD}(f, r, N)}\right)^2}
$$

$$
\mu_{PSD}(f, r, N) = \sqrt{PSD(f) \frac{\tau(r)}{N}}
$$

Green and Nippress, 2019

- $\mathbf{r}(\mathbf{r})$: wavetrain duration
- N: number of array elements

Jul

Jun

Sep

Oct

Nov

Dec

Jan

Aug

Feb

Jan

Mar

Apr

May

Global simulations (WACCM 3h)

■ **Global simulation with real noise**

- One station coverage: 100 800 t TNT
- 100 t threshold is achieved for 75% earth coverage
- (Sub-)seasonal variations: one order of magnitude

 $C22$

Global simulations at 2 and 14 UTC

$\underline{\underline{\text{cea}}}$

Summary / perspectives

■ **Results**

- A Bayesian framemork: from the source to the receiver
- Updated attenuation relation; station noise measures
- Highly variable thresholds: from season to hourly scales
- One station coverage: $100 800$ t TNT
- Applications: near-real time assessment of the spatio-temporal variability of the IMS network performance; MA diagnostics using GT, civil applications (e.g. volcanoes)

■ **Perspectives**

- Perform sensitivity studies on middle-atmospheric fine structures (Drob et al., 2013; Vorobeva et al., 2023)
- Validation through comparisons with observations
- New approaches based on ML techniques are being explored (Brissaud et al. 2022; Cameijo, ITW24)

