



# Enhancing Infrasound Monitoring in South America through Automated Algorithms

José Luis Palma<sup>(1)</sup>, Christopher Celis Huaiquilaf<sup>(2)</sup>

(1) Department of Earth Sciences, University of Concepción, Chile. jose@udec.cl Observatory of Environmental Risks (ORA-UdeC)

(2) Chilean Nuclear Energy Commission, Ministry of Energy, Chile

International Technological Workshop 2024 Vienna, Austria. 4-8 November



PUTTING AN END TO NUCLEAR EXPLOSIONS

### Collaboration between CCHEN-NDC and UdeC, Chile

CCHEN= Chilean Nuclear Energy CommissionUdeC= University of Concepción

In March 2024, CCHEN and UdeC signed a collaboration agreement that creates the UDEC-NDC Extension.

- Develop scientific research, teaching and outreach on the Comprehensive Nuclear-Test-Ban Treaty, and the use of the IMS data.
- Enhanced Analytical Capabilities: Gain access to specialized expertise.
- Support with the evaluation of the quality and with the interpretation of the data.
- Expanded Data Sources: Integrate regional and local data for improved monitoring.
- Support in Capacity Building: Training and skill development for staff and students.
- Participate in Joint Research and NDC Preparedness Exercises.
- Engage in CTBTO Training Programs for data analysis and protocol compliance.

### Local infrasound to study the activity of Villarrica volcano



# Local infrasound to study the activity of Villarrica volcano





Infrasound-derived gas emissions

Small aperture (30 – 100m) infrasound arrays of 3-6 elements Sensors: Chaparral 60Vx2, custom-made, Raspberry-boom Main frequency of interest around 1Hz

# So, what's the plan?

- Chilean NDC knows NDC-in-a-Box package software but lacks the resources for reviewing data:
  - Lack of personnel for frequent analysis
  - Lack of expertise in some of the monitoring technologies, including processing and interpreting the data
  - Lack of computing resources
- At UdeC we have knowledge on several monitoring techniques, although we don't know much about the IMS technology.
- Once we learn more about the data and some processing techniques, CCHEN-UdeC can start planning specific projects.
- Learning the Progressive Multi-Channel Correlation Algorithm (PMCC) seems like a good starting point. Can we automate it?

# Why an automated processing with My-PMCC?

Advantages:

- Removes the need for manual operation by an operator
- An opportunity to learn the knitty-gritty of the processing algorithms
- Open to modifications to accommodate specific needs:
  - Improvements
  - Requirements from Local NDCs
  - Scientific applications

Disadvantages:

- Automated operation requires consideration of numerous scenarios
- Not "user-friendly"
- The developers need to check for and fix problems from time to time

# **Developing My-PMCC**



•••

# **Developing My-PMCC**

#### PMCC algorithm (class)

- Define subnetworks
- Define freq bands and window lengths
- Loop through windows:
  - Loop over frequency bands:
    - Create an array of windows
    - Filter the array
    - Apply x-correlation
    - Select bad channels
    - Get list with subnetworks
    - Loop over subnetworks:
      - X-correlation (directed, high def)
      - Calculate mean xcorr, consistency
      - If good consistency:
        - Calculate wave parameters
      - Calculate overall consistency
    - For pixel (freq, time) save results
- Group pixels and define families



#### Infrasound stations in SA – Example in Robinson Crusoe island





# Example of I14CL 2015





![](_page_11_Figure_0.jpeg)

# Setting some parameters: frequency bands & windows length

![](_page_12_Figure_1.jpeg)

# **Cross-correlation and correlogram**

![](_page_13_Figure_1.jpeg)

# **Cross-correlation and correlogram**

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

### For the future

- Compare with, and learn from, other software (e.g. official PMCC, Infrapy)
- Learn from you!
- Validate the results with known (published) examples
- Develop customized applications for local NDCs.
- Study IMS performance and event detections in South America
- Create algorithms to combine results from multiple stations in SA
- ... and many more planned advancements.

# Thank you

#### Example in Robinson Crusoe island, I14CL 2024

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

#### **Class PMCC**

+

.subnetwork\_def()
.def\_freq\_bands()
.def\_win\_lengths()
.apply\_filter()
.get\_subnet\_list()
.calculate()

• • •