

 \succ

IMS

Introduction: detection capability and transmission losses

detection capability with infrasound technology builds upon relevant estimations of

transmission losses at the surface across the network throughout the year (Figure 1).

January 1 April 1 April 1 April 1 April 1 October 1 October

Figure 1. Smallest signal attenuation expected at 0.8Hz with a 2-station coverage (Le Pichon et al. 2012) using IFS/ECMWF (-60 dB is a factor of 1000 in amplitude.)

- Gravity waves (GW) significantly alter the propagation path of infrasound waves in the middle atmospheric waveguide through partial reflections in the shadow zones (Figure 2), or through the temporary setting of a new stratospheric geometric waveguide.
- However GW are often poorly resolved in atmospheric specifications despite their estimated significant effect on detection thresholds (up to factor of 5-10 on the amplitude) Le Pichon et al. 2019

Figure 2. Explaining infrasound detection of Le Teil's earthquake at Observatoire de Haute Provence (OHP) (Vallage et al. 2021)

Please do

not use this space, a QR code will be

automatically

LATM

OETHE 🔐

NIVERSITÄ

Max-Planck-Institut

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

 $\left|\right>$

 $\left(< \right)$

für Meteorologie

DWD

9

cea

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

[<]

 $\left[\right>\right]$

In the literature, there are different ways of investigating/accounting for the impact of GW in infrasound propagation simulations:

- Parameterizations based on the GW universal spectrum e.g. Gardner et al. 1993, as in Vallage et al. 2021
- Stochastic parameterizations accounting for GW intermittency e.g. de la Camara et al., 2015 as in Cugnet et al. 2019
- GW ray-tracing equations applied to a frequency spectrum e.g. Drob et al. 2013
- 3D GW-spectrum model Chunchuzov & Kulichkov, 2019
- Working with high-resolution O(1 km) models explicitly resolving a large part of the GW spectrum
 without using GW parameterizations is another way, given increased computing means.
- We use a dataset of a high-resolution model runs' outputs to demonstrate a method for quantifying the systematic impact of GW across IMS stations, based on transmission losses (TLoss) calculations.

Please do not use this space, a QR code will be automatically overlayed

Data and method: deriving GW perturbations in the stratosphere and building atmospheric specifications

Data	Method	
DYAMOND dataset Stevens et al. 2019, phase II Stephan et al. 2022	GW extraction for field X=U,V,T	
Model : ICON Zängl et al. 2015	 ICON outputs interpolated on a vertical grid 	
Period: 20 Jan. – 29 Feb. 2020 (3-hourly outputs)	with dz=1.5km to match average dz in the	
Initialization : ECMWF/IFS ; freely-running	stratosphere	\sim
Model top : 75km (45 km: avoiding sponge layer)	 background X_{back} obtained by filtering out 	
Configurations:	λ_z < 15 km (3 rd order Butt. filt.) in T	
 dpp0029: dx = 5km (regridded: 0.35° x 0.35°) 	e.g. Baumgarten et al., 2017	OBJECTIVES
 nwp2.5winter: dx = 2.5km (regridded: 0.35° x 0.35°) 	• deriving GW perturbation: $X - X_{back} = \Delta T$	
	Atmospheric specifications for IS	METHODS/DA
Rayleigh lidar observations at OHP e.g. Hauchecorne et al. 1980	Altitude: sticking to 0-45 km only	RESULTS
Observatoire de Haute Provence, France (LATMOS)	\rightarrow avoiding artefacts from upper	CONCLUSIO
Altitude range: 30-90km; Vertical resolution : 75 m;	interpolation with other model	
Accuracy: < 1K (below 70km altitude)	Filtering: only applied in the stratosphere	
Data: 16 night profiles (4 hourly-average)	\rightarrow avoiding filtering out low level jets	
Satellite observations: GRACILE dataset Ern at al 2019	$\begin{bmatrix} At OHP \\ \underbrace{\&} \\ 40 \end{bmatrix} = \begin{bmatrix} 40 \\ 40 \end{bmatrix} = \begin{bmatrix} 40 \\ 40 \end{bmatrix}$	
IR limb sounders HIRDIS (2005-2008) and SAREP (2002-2015)	29 Jan. 2020 gg 20 - 18H gg 20 - 18H gg 20 - 20 -	
\rightarrow zonal averages of En (mean max min) Diat $-2.5^{\circ}/5^{\circ}$		Places de
~ 20 rai averages of EP (mean, max, min), $Diat_{hirdls/saber}=2.5/5$	U (m/s) V (m/s) T (K)	not use thi

Infrasound propagation simulations

Range-independant PE simulations done with NCPAprop *Waxler & Assink, 2019* at OHP and IMS stations **Deriving TLoss differences** between PE simulation using specifications w and w/o GW, respectively

Please do not use this space, a QR code will be automatically overlayed

P1.1-675

Results: stratospheric GW across the IMS and impact on transmission loss

LATM

OETHE

NIVERSITÄ

Max-Planck-Institut

DWD

Cea

Conclusion: impact of gravity waves (GW) on transmission losses (TLoss)

- We demonstrate a method for quantifying the systematic impact of stratospheric GW across IMS stations, based on TLoss calculations with PE simulations.
- We use a database of state of the art high-resolution model outputs where GW are not parameterized.
- We validate the modelled GW perturbations using Rayleigh lidar data at Observatoire de Haute-Provence.
- We validate the modelled GW amplitudes using satellite products across the IMS based on the GW potential energy (E_p).
- The average impact of GW is much larger at 1 Hz (Tloss increase of up to 40 dB) than at 0.1 Hz (less than 10 dB).
- The impact of GW versus distance-to-station depends on the considered IMS station (hemisphere) with a more or less pronounced impact on the shadow zone. There is no systematic link between GW impact on TLoss and GW energy (latitude). This points at the complex intrication of small-scale structure's role with that of the larger-scale variability (main stratospheric guide).

P1.1-675

References

LATM

JOETHE 🚱

NIVERSITÄT

Max-Planck-Institut für Meteorologie

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

Please do not use this

space, a QR code will be

automatically overlayed

P1.1-675

[<]

DWD

9

Cez

Ð

- Baumgarten, K., Gerding, M., & Lübken, F. J. (2017). Seasonal variation of gravity wave parameters using different filter methods with daylight lidar measurements at midlatitudes. Journal of Geophysical Research: Atmospheres, 122(5), 2683-2695.
- de la Camara, F. Lott, « A parameterization of gravity waves emitted by fronts and jets », Geophys. Res. Lett., 42, p. 2071-2078 (2015).
- Chunchuzov, I., & Kulichkov, S. (2019). Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In *Infrasound Monitoring for Atmospheric Studies* (pp. 551-590). Springer, Cham.
- Cugnet, A. De La Camara, F. Lott, C. Millet, B. Ribstein, (2018), « Non-orographic gravity waves : representation in climate models and effects on infrasound », dans A. Le Pichon, É. Blanc,
- Drob, D. P., D. Broutman, M. A. Hedlin, N. W. Winslow, and R. G. Gibson (2013), A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations, J. Geophys. Res. Atmos., 118, 3933–3943,
- Gardner, C. S., C. A. Hostetler, and S. J. Franke (1993), Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations, J. Geophys. Res., 98, 1035-1049
- Hauchecorne, A., and M. L. Chanin (1980), Density and temperature profiles obtained by lidar between 35 and 70 km, Geophys. Res. Lett., 7(8), 565–568, doi:10.1029/GL007i008p00565.
- Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, 2018.
- Le Pichon, A., L. Ceranna, and J. Vergoz (2012), Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network, J. Geophys. Res., 117, D05121, doi:10.1029/2011JD016670.
- Le Pichon, A., Ceranna, L., Vergoz, J., & Tailpied, D. (2019). Modeling the detection capability of the global IMS infrasound network. In Infrasound Monitoring for Atmospheric Studies (pp. 593-604). Springer, Cham
- Stephan, CC, Duras, J, Harris, L,Klocke, D, Putman, WM, Taylor, M, Wedi, NP, Žagar, N and Ziemen, F. 2022. Atmospheric Energy Spectra in Global Kilometre-Scale Models. Tellus A: Dynamic Meteorology and Oceanography, 74(2022): 280–299. DOI: https://doi.org/10.16993/tellusa.26
- Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., ... & Kodama, C. (2019). DYAMOND: The DYnamics of the atmospheric general circulation modeled on non-hydrostati domains. Progress in Earth and Planetary Science, 6(1), 61.
- Waxler, R., & Assink, J. (2019). Propagation modeling through realistic atmosphere and benchmarking. Infrasound monitoring for atmospheric studies: Challenges in middle atmosphere dynamics and societal benefits, 509-549.
- Vallage et al. (2021) Multitechnology characterization of an unusual surface rupturing intraplate earthquake: the ML 5.4 2019 Le Teil event in France, Geophysical Journal International, Volume 226, Issue 2, August 2021, Pages 803–813
- Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf (2015): The ICON (icosahedral non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563–579