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A 3-D benchmark model of 
the fluid wedge over an 

elastic bottom is applied to 
explain low frequency long-
range propagation from an 
acoustic source submerged 
in shallow water overlaying 

a sloping elastic-type 
seabed.

P1.3-267

Acoustical propagation 
inside the wedge is 

analyzed into a series of 
the so-called “generalized 

ray integrals;” each integral 
representing a waveform 
traveling along a specific 

path in the wedge.

This approach provides a 
complete acoustic signal 

received at a large distance 
from the source, including 

all of the waveforms typical 
for the model.

When a source emits 
acoustic signals of a low 
frequency content, the 
Scholte waves become 

dominant at large 
distances.
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Introduction [1]: In shallow-water environments long-range propagation proceeds by repeated 
reflections from the surface and the bottom of the channel, as is the case for underwater sound 
of a wide spectral range, whose very low frequencies may propagate over large distances 
(several tens of kilometers), without significant losses. 

In this paper, a 3-D benchmark model of the fluid wedge over an elastic bottom (Fig. 1) is 
applied to explain low frequency long-range propagation from an acoustic source submerged in 
shallow water overlaying a sloping elastic-type seabed, such as a marine sediment possessing 
enough rigidity (elasticity in shear), allowing hydroacoustic-to-seismic conversion at a water-
sediment interface. 

of the so-called “generalized ray integrals” 

each integral representing a Laplace-transformed waveform traveling 
along a specific path in the wedge, the first being the wave from the 
source directly to the receiver, the second being reflected once, etc. 

The inverse Laplace transforms of the ray integrals, found by applying the 
method of Cagniard, 

are in the form of single integrals along a complex contour. 

Using a standard Gauss-Legendre quadrature 

the CPU intensive numerical evaluation of each ray integral can then 
be accomplished along a new (the analytical equivalent of the original) 
contour to avoid the branch points of the critically refracted (lateral) 
waves, the stationary point of the regularly reflected wave, and the pole  
of the Scholte interface wave.  These singular points might cause great 
difficulty in numerical integration, if performed along the original contour. 

The exact solutions for pressure responses (acoustical signals) of the 
ray integrals are found by applying the convolution theorem. Since the 
inverse Laplace transforms of the ray integrals are provided at a fixed 
interval, the convolution integrals are evaluated using Simpson’s rule, 
and the complete signal recorded by a remote receiver is the sum of 
the signals corresponding to all ray integrals, 
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Fig. 1 Fluid wedge over an elastic bottom with a bottom receiver located cross-slope off the source; 

 i.e., negligible attenuation of the source signal and the regularly reflected waves; slow-speed elastic 
bottom (limestone): ρ2  = 2.4 g/cm3, cP  = 3000 m/s, αP  = 0.1 dB/λ , i.e., attenuation of the critically 
refracted wave αRefr  = αP , cS = 1460 m/s, cS < cP , αS = 0.2 dB/λ , i.e., attentuation of the Scholte 
wave αSch  = 1.1αS . 

α  = 3 deg, r  = 40 km, h = 200 m, z0  = 100 m; fluid (water): ρ  = 1 g/cm3, c  = 1500 m/s, αP  = 0 dB/λ , 

Generalized-Ray Method [2]: Acoustical propagation inside the wedge, being effected by 
repeated reflections of the wave emitted from a point source, can be analyzed into a series  
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The method of generalized ray provides a complete signal recorded by a remote receiver, 
including all of the three unattenuated waveforms typical for the model: the critically refracted 
(lateral) waves, the source signal and the regularly reflected waves, and the Scholte interface 
waves, received in order of their arrivals at a large distance from the source.  Note that, for the 
two in this paper considered Gaussian-weighted source signals, the received levels (RLs) of the 
attenuated waveforms can be determined from   

Results:

p0(t) =
pc
R
!f (t − r/c) = pcH(t − t0) !!f (t − τ )

t0

t

∫ I0(τ )dτ , pc = − ρ
4πc2

,

p±k (t) = pcH(t − t±k ) !!f (t − τ )
t±k

t

∫ I±k (τ )dτ , p(t) = p0(t)+ p±k (t)
k=1

N

∑ ,  N = π /α. 
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Fig. 2 Time records of the received unattenuated pressure due to a source signal of the form of a Heaviside
unit function; (a) the critically refracted (lateral) waves; (b) the source signal and the regularly reflected waves;
(c) the Scholte interface waves (t = time; p = pressure; tC, pC  =  normalizing constants). 

RL = Lp −α r,  α  = attenuation (dB/λ),  r =  range (m), 

Lp  = sound-pressure level of the unattenuated waveform (dB).
 

Fig. 2− continued
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Fig. 3 Time record of the received unattenuated pressure due to a Gaussian-weighted
source signal with a center frequency of cf  = 3 Hz, a bandwith of w  = 0.5 Hz, and
a sound-pressure level of 171 dB re 1 µPa at 1 m; (a) the entire record; (b) the early
portion of the pressure curve shown in greater detail (t = time; p = pressure; 
tC, pC  =  normalizing constants, LP  = sound-pressure level). (b) on p. 4.
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Fig. 3 − continued
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Fig. 4 − continued

Fig. 4 Time record of the received unattenuated pressure due to a Gaussian-weighted source signal
with a center frequency of cf  = 36 Hz, a bandwith of w  = 0.5 Hz, and a sound-pressure level of  171
dB re 1 µPa at 1 m; (a) the entire record; (b) the early portion of the pressure curve shown in greater
detail (t = time; p = pressure; tC, pC  =  normalizing constants, LP  = sound-pressure level).

Fig. 5 Received levels (RLs) of the three (critically refracted, source signal and 
regularly reflected, and Scholte) attenuated waveforms, recorded in order of their
arrivals at the receiver shown in Fig. 1; (a) due to a Gaussian-weighted source
signal with a center frequency of cf  = 3 Hz, a bandwith of w  = 0.5 Hz, and
a sound-pressure level of 171 dB re 1 µPa at 1 m; continued on p.5.
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Fig. 5 − continued − (b) due to a Gaussian-weighted source signal with a center frequency of cf  = 36 Hz,
a bandwith of w  = 0.5 Hz, and a sound-pressure level of 171 dB re 1 µPa at 1 m.
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Conclusion:

1. When a source emits signals of a low-frequency content, like of 3 Hz [Fig. 5(a)], the 
contribution from the Scholte waves becomes dominant at large distances.  Hence, low 
frequency long-range propagation in a shallow-water wedge (coastal wedge) over an elastic 
seabed may indeed be governed by the Scholte waves. 

2. With the recent advent of a novel high order Gauss-Legendre quadrature [3] and benefits 
offered by High-Performance-Computing (HPC) environments, it can be possible in a 
reasonable time to achieve desired accuracy in the calculations, even at larger propagation 
ranges than those reported in the paper, by increasing the number of Gaussian points in 
numerical integration. 
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