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Differentiating between 
tectonic events and man-
made events is a difficult 
task, especially when the 
sources are close to each 
other. Existing methods do 

not always provide certainty. 
In this work, co-located 
infrasonic and seismic 
sensors are used for 

discrimination. 
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This study proposes a 

practical approach using 

infrasonic and seismic 

sensors located in the same 

site to help differentiate 

these events. The co-

located sensors were 

installed in two different 

sites:  Brasília National Park 

(PNB) and the Sete Lagoas 

city, Brazil. 

Low-magnitudes 
earthquakes (< 3) appear to 
be relatively poor infrasound 
sources, and that absence 
of infrasound is being used 

as a source-type 
discriminant in this work.  

The combination of seismic 
and infrasound monitoring 

provides a good way of 
discriminating events. In our 

case, all local tectonic 
events did not generate 

infrasonic signal, in other 
hand, all quarry blasting 

generate. 
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Distinguishing between tectonic and artificial events (quarry blasts) is a challenge when the sources are close to each 
other, and when they are low-magnitudes (<3). This is a common problem when forced mass movement trigger 
seismicity.  
 
Despite known a variety of discriminants (Postema, 1996; SSA, 2020; Wang et al., 2020; Hissely, 2022; Korrat et al., 2023; 
Saadalla et al., 2023) uncertainty about the origin and nature of these events may persist. This problem would not exist if 
the mines companies inform the explosion’s origin time and location. 
 
Explosions produce seismic signal and also infrasonic signal (ReVelle et al., 2004; Che et al., 2010; Czanik, 2021), e.g., 
seismo-acoustic analysis was used to distinguish between quarry blasts and local earthquakes in Romania (Ghica et al., 
2016). This approach will be used in this work to help to discriminate between these two type of sources. 
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This study proposes a practical approach using infrasound and seismic stations located together to differentiate the nature 
of the events. The co-located stations were installed in two sites in different periods: Brasilia National Park - PNB (Fig. 1) 
and Sete Lagoas city (Fig. 2), both in Brazil. 

Fig. 1 - PNB site, Brasilia 
Location of the I09BR infrasound station's four elements (H1, H2, H3 and H4 - 
green triangles) and the BDFB seismic station (red triangle), where it was co-
located the RFFB5 station (composed by a seismic sensor and an infrasonic 
sensor) temporary. The blue stars indicate four blasting mines. 

Fig. 2 - Sete Lagoas site, Minas Gerais State 
The green triangle represents the acoustic and seismic vertical short period (SP) 
co-located station, denominated RFFB5. The blue stars represent the blasting 
mines in operation. The red circles indicate the epicenters of natural events 
from 1931 to 2022 (IAG-USP and SIS-UnB catalogues), all prior to RFFB5. 
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The PNB vicinities are devoid of natural events, whose prevent to achieve the objective of this study. To address this 
limitation, we have selected Sete Lagoas city as our research location, as it experiences both low-magnitudes 
earthquakes and man-made events in its vicinity. 
 
The data produced in the PNB site served for comparing the signals recorded by the Brazilian IMS stations (BDFB and 
I09BR) with the recorded by RFFB5 equipment (one vertical short period sensor plus one acoustic sensor integrated), 
co-located with BDFB (Figs. 1 and 3) and also used in Sete Lagoas site, Fig. 2. 

Fig. 3 - Artificial event (Mine #2) occurred on 12/08/2022, at 20:16:12.6 UTC, 
recorded at PNB site (Fig. 1) by: BDFB (traces 1, 2 and 3); RFFB5 (co-located at 
BDFB site), trace 4 (seismic signal) and trace 5 (acoustic signal); and I09BR (traces 
6, 7, 8 and 9). It was used a 4th order Butterworth Filter for the seismic signals (3 
- 12Hz) and for the acoustic signals (1 - 3 Hz). 
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In Sete Lagoas site (Fig. 2), the RFFB5 station recorded 25 
local events (Δ < 40 km). In 16 events were detected 
seismic and acoustic signals (white lines in the Table). In 
the remaining 9 events (in yellow), only seismic signals 
were detected, clearly related to micro earthquakes. 

A - Date (dd/mm/yyyy)   B - Time UTC (hh:mm:ss) 
C - Seismic signal    D - Acoustic signal    E - S–P (s) 
F - Observed acoustic signal time after first P wave (s) 
G - Theoric acoustic signal time after first P wave (s) 

Acoustic wave arrival time at the Sete Lagoas 
site can be predicted using the average speed 
of the acoustic waves and the mathematical 
equation y=22.37x – 3.74, derived from the 
linear regression analysis below. This enables 
determination of a time window for the 
expected arrival time of the infrasonic signals 
for events without acoustic signals. The window 
length is based on the average differences 
between F and G columns. 

Linear regression of 
acoustic signal arrival 
time after first P 
seismic phase (in 
seconds) regarding to 
S-P time difference (in 
seconds). 

(s) 

# A B C D E F G 
1 03/10/2022 18:13:46 yes yes 1.41 26.40 27.80 

2 03/10/2022 18:15:06 yes yes 1.32 24.60 25.79 

3 04/10/2022 20:14:35 yes yes 0.93 20.50 17.07 

4 07/10/2022 12:59:06 yes no 0.81 - 14.38 

5 07/10/2022 20:11:17 yes no 0.82 - 14.61 

6 10/10/2022 14:07:40 yes yes 0.46 6.90 6.55 

7 11/10/2022 14:45:17 yes yes 1.03 19.10 19.30 

8 14/10/2022 16:33:30 yes yes 1.54 30.00 30.71 

9 16/10/2022 12:18:22 yes no 1.3 - 25.34 

10 17/10/2022 18:27:36 yes yes 1.30 26.10 25.34 

11 19/10/2022 14:16:51 yes yes 0.46 7.00 6.55 

12 20/10/2022 21:57:14 yes no 1.30 - 26.34 

13 20/10/2022 22:08:47 yes no 1.30 - 26.34 

14 20/10/2022 22:43:17 yes no 1.30 - 26.34 

15 21/10/2022 14:46:09 yes yes 0.97 19.20 17.96 

16 21/10/2022 16:30:39 yes yes 1.42 29.80 28.03 

17 29/10/2022 14:15:27 yes yes 1.00 19.30 18.63 

18 29/10/2022 14:25:54 yes yes 1.10 19.50 20.87 

19 31/10/2022 14:14:07 yes yes 0.64 6.60 10.58 

20 18/11/2022 03:30:38 yes no 1.29 - 25.12 

21 21/11/2022 19:08:44 yes yes 1.38 25.80 27.13 

22 22/11/2022 03:34:02 yes no 0.84 - 15.05 

23 24/11/2022 02:02:37 yes no 0.75 - 13.04 

24 28/11/2022 16:04:46 yes yes 1.20 24.50 23.11 

25 29/11/2022 20:21:48 yes yes 1.10 21.00 20.87 
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Event #20.  Event #22. Event #23. 

Event #11. Event #17. Event #19. 

Three examples, from 16, of detonations in mines that generated both seismic and 
acoustic signals. It was used a 4th order Butterworth Filter for the acoustic signals (1 - 
3 Hz). 

Events that generated only seismic signals, occurred out of working hours, when 
detonations are not typically performed, and with S-P consistent with mines distances. 
The red window denotes the expected record time of the acoustic signals. It was used 
a 4th order Butterworth Filter for the acoustic signals (1 - 3 Hz). 

Mutschlecner and Whitaker 
(2005) have shown that the 
absence of acoustic waves can 
be possible explain the nature of 
the event. Their research 
demonstrates that small-
magnitudes earthquakes do not 
produce infrasonic signals, as the 
atmospheric infrasound 
generation requires a minimum 
peak surface acceleration 
threshold between 10 and 20 
cm/s². 
  
Arrowsmith et al. (2011) show 
that low-magnitudes 
earthquakes appear to be 
relatively poor infrasound 
sources and that infrasound 
should be used as a source-type 
discriminant. 
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The utilization of a co-located seismic and infrasound stations is an effective method to discriminate low-magnitudes 
tectonic events and quarry blasting with source close to each other. The absence of acoustic signals in local events 
serves as an useful discriminator, allowing us to classify an event either as natural occurrence or triggered by the 
mine, when they take place within the pit. Infrasound stations have proven to be reliable sources of information, 
particularly in situations where uncertainty exists regarding the nature of an event. 
  
It is important to note that the detectability of seismo-acoustic signals is influenced by various factors, including 
event magnitude, distance, and meteorological conditions. The study case conducted in Sete Lagoas site revealed 
that low-magnitudes earthquakes did not produce detectable acoustic signals, even with an infrasound station close 
to the source (~5 km). Therefore, while the co-located seismic and infrasound station offers significant advantages, it 
is necessary to consider these factors and account for variations in event characteristics and signal detectability. The 
way to manage these factors is to deploy one or two 4-elements infrasound arrays in the vicinities of the mines 
under investigating, in order to locate the events sources.  
 
Overall, the combination of seismic and infrasound monitoring provides a good and reliable method to discriminate 
events. It enhances our understanding of characteristics of both natural and man-made events by contributing to 
these events classification. 
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