
SnT 2023 DETERGENERATE - VIENDA OF CONFERENCE HOFBURG PRLACE - VIENDA and Online 19 TO 23 JUNE PNNL-SA-186217 Cuantifying the Potential of Argon Detection Capabilities for Nuclear Explosion Monitoring Dranshu Adhikari¹, Emily Gordon¹, Khiloni Shah¹, Paul Eslinger², Harry Miley², Theodore Bowyer², Derek Haas¹ The University of Texas at Austin, ²Pacific Northwest National Laboratory

- There is utility for ³⁷Ar as an additional signature for nuclear explosion monitoring.
- With a sufficiently low detection limit, a network of ³⁷Ar detectors would have a high probability of detecting ³⁷Ar produced from a UNE.
- ³⁷Ar can also be detected in coincidence with radioxenon isotopes, helping to increase confidence in signature analysis.

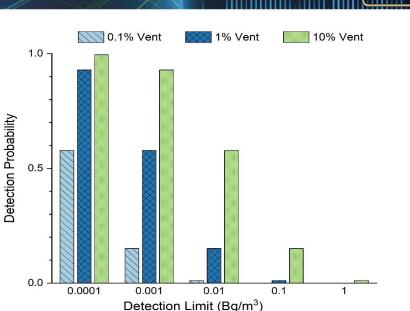


Fig 1. Probability that a release is detected in one or more samples.

Fig 2. Average number of stations detecting each release and average number of samples with a detectable concentration.