

Introduction

Context: Nuclear Explosion Monitoring

IMS stations in proximity to a hypothetical release point¹.

This project builds on previous work modeling the detection of noble gases at IMS stations, now incorporating a variable vent fraction for both prompt and delayed releases of fission products from a simulated underground nuclear explosion.

Problem: Uncertain particulate and noble gas venting fractions

Table 1: Isotope activity for prompt and delayed vent

lsotope	Prompt Activity (Bq)*	Delayed Activity (Bq)	
Xe-140	1.24E+21	0	
Xe-137	8.37E+19	0	
Xe-135m	1.02E+18	2.05E+16	
I-135	7.92E+17	1.19E+17	
Xe-135	1.66E+16	3.24E+17	
I-133	1.11E+16	2.33E+17	
Ba-140	1.90E+15	2.95E+16	
La-140	1.02E+14	1.03E+16	
Xe-133m	9.12E+13	2.65E+15	
I-131	2.32E+13	2.10E+16	
Xe-133	1.32E+13	4.08E+16	
Cs-137	8.97E+11	3.68E+13	
Xe-131m	1.63E+09	1.25E+13	

Table 2: Prompt/delayed release fractions

	Prompt	Delayed
Noble Gases	10% 1% 0.1% 0%	10% 1% 0.1% 0%
Particulates	0.1% 0.01% 0.001% 0%	

*Note for Table 1: Prompt release Xe-140 is decayed to Ba-140 and Xe-137 to Cs-137

INTRODUCTION METHODS/DATA RESULTS CONCLUSION $\langle \rangle$ $\left[\right>\right]$

Please do not use this space, a QR code will be automatically overlayed

Methods – Modeling and Simulation Tools

Flowchart for the combination of atmospheric transport modeling tool HYSPLIT and nuclide inventory tracker SCALE with data processing tool Mathematica

INTRODUCTION METHODS/DATA RESULTS CONCLUSION

> Please do not use this space, a QR code will be automatically overlayed

P2.4-361

Methods – Simulation Parameters

Table 1: Isotope activity for prompt and delayed vent

Isotope	Prompt Activity (Ba)*	Delayed Activity (Ba)	
Xe-140	1.24E+21	0	
Xe-137	8.37E+19	0	
Xe-135m	1.02E+18	2.05E+16	
I-135	7.92E+17	1.19E+17	
Xe-135	1.66E+16	3.24E+17	
I-133	1.11E+16	2.33E+17	
Ba-140	1.90E+15	2.95E+16	
La-140	1.02E+14	1.03E+16	
Xe-133m	9.12E+13	2.65E+15	
I-131	2.32E+13	2.10E+16	
Xe-133	1.32E+13	4.08E+16	;
Cs-137	8.97E+11	3.68E+13	
Xe-131m	1.63E+09	1.25E+13	1

Table 2: Prompt/delayed release fractions

	Prompt	Delayed
Noble Gases	10% 1% 0.1% 0%	10% 1% 0.1% 0%
Particulates	0.1% 0.01% 0.001% 0%	

*Note for Table 1: Prompt release Xe-140 is decayed to Ba-140 and Xe-137 to Cs-137 Table 3: HYSPLIT and SCALE simulation parameters

Dilution Factor		Nuclide Activities	
Release Time	Daily releases from Jan 1 to Dec 31, 2020	Transport Time	1 hr increments to 10 days
Transport Time	1 hr increments to 10 days	Prompt Vent	Tables 1-2
Position	Origin: (41.28, 129.09) Corner: (11.25, 84)	Delayed Vent	Tables 1-2
Deposition	Noble gas, iodine or particulate	Fission Nuclide	U-235 or Pu- 239

INTRODUCTION METHODS/DATA RESULTS CONCLUSION

> Please do not use this space, a QR code will be automatically overlayed

P2.4-361

Example Results and Conclusion

Results – Example

- Case 111: 10% prompt vent + 10% delayed vent
- Release date: January 1, 2020

HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE

- Non-zero dilution factor at JPP38 in 10 days following release
- Xe-133 MDC = 0.15 mBq/m3
- Four detections of Xe-133 at JPP38 in the 10 days following January 1, 2020

Next Steps

- Use Texas Advanced Computing Center's Lonestar6 to run HYSPLIT for one year's worth of start dates
- Combine dilution factors from HYSPLIT with nuclide inventories from SCALE
- Tally number of detections per station per isotope
- Look for changes in signatures including xenon ratios based on vent fractions

Acknowledgments

This Low Yield Nuclear Monitoring (LYNM) research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge important interdisciplinary collaboration with scientists and engineers from LANL, LLNL, NNSS, PNNL, and SNL.

Please do not use this space, a QR code will be automatically overlayed

References

 Haas, D. A., Eslinger, P. W., Bowyer, T. W., Cameron, I. M., Hayes, J. C., Lowrey, J. D., & Miley, H. S. (2017). Improved performance comparisons of radioxenon systems for low level releases in nuclear explosion monitoring. *Journal of Environmental Radioactivity*, 178, 127-135.

