

Introduction

In this research, a novel detection system for radioxenon is developed, aiming to enhance the sensitivity of detection in laboratory analysis. The designed system is a new prototype which is tested by injecting the ²²²Rn and its daughters (²¹⁴Pb and ²¹⁴Bi) as a beta–gamma emitter and also ^{131m}Xe gaseous sources, which are of interest to the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). To calibrate and verify the system, a ^{166m}Ho source is utilized. This detection system comprises a gamma and X-ray radiation detector, specifically Nal(TI), and a silicon detector for detecting beta particles or conversion electrons. The inclusion of silicon aims to improve energy resolution and reduce the likelihood of memory effect in comparison to a scintillator detector. Coincidence parameters are established using a list-mode multi-parameter data acquisition system, and the efficiency of the two detectors and minimum detectable activity (MDA) are determined.

HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE

INTRODUCTION
OBJECTIVES
METHODS/DATA
RESULTS
CONCLUSION

Please do not use this space, a QR code will be automatically overlayed

- > PIPS detector with a 500 μ m thickness
- Sodium iodide gamma scintillation detector NaI(TI) with 76 mm×76 mm diameter
- > Air-tight aluminum cell with a sample gas volume of 48.8 ml and 1 mm thickness
- Ortec vacuum chamber and vacuum pump with a vacuum gauge ranging from zero to 1000 mTorr
- Preamplifiers for PIPS and Na(TI) detectors
- N6781 Dual/Quad Digital Multi-Channel Analyzer (MCA)
- High-gain CAEN amplifiers

Please do not use this space, a QR code will be automatically overlaved

Detector energy calibrations

Calibration of the gamma detector: Using the gamma sources with known energies included ²⁴¹Am (59.54 keV), ⁵⁷Co (122.06 keV), ¹³⁷Cs (661.67 keV, 32.8 keV), ¹³³Ba (31 keV, 81 keV, 302 keV, 356 keV), and ²²Na (511 keV).

Calibration of the beta detector: Using two sources of ¹³⁷Cs and ^{166m}Ho with two different methods (Compton scattering and calibration with known electron energies) to validate the system performance.

Above: The 2D coincidence calibrated histogram resulting from Compton scattering of ¹³⁷Cs in the PIPS and the NaI(TI) crystal

⁰³ Right up: The ^{166m}Ho beta energy calibration source

Right down Conversion electron spectrum of the ^{166m}Ho source

Please do not use this space, a QR code will be automatically overlayed

Results

^{131m}Xe measurement

HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE

The ~30 keV X-rays in coincidence with 129 keV conversion electrons (CE) caused a significant ROI in the coincidence spectrum of ^{131m}Xe.

Radon measurement

²¹⁴Pb and ²¹⁴Bi are produced by the decay of ²²²Rn with 3.8 days half-life. They are emitters of beta and gamma in coincidence which are relevant to radioxenon isotopes and interesting to detect in our system for a performance test.

There are adequate separations between the energies of interest due to the good detector energy resolution

METHODS/DATA RESULTS CONCLUSION CONCLUSION CONCLUSION Please do not use this space, a QR code will be automatically overlayed

INTRODUCTION

OBJECTIVES

Quantification results

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

Please do not use this space, a QR code will be automatically

overlayed

P3.2-512

Energy resolution

7.8% for the 129-keV ^{131m}Xe conversion electron 18.11% for the summed ~31 keV X-ray peaks

Detection efficiencies

The coincidence detection efficiency ($\varepsilon_{\beta\gamma}$) about 0.015 ± 0.0012% for ^{131m}Xe (~31 keV + 129 keV) The absolute efficiency for the NaI(TI) is 1.18 ± 0.06% The absolute efficiency for PIPX detector is 0.024 ± 0.001%

Minimum detectable activity

MDA for pure ^{131m}Xe is 625 mBq

The results are discussed in a submitted paper that is currently under review.

Conclusion

()

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

 $\langle \rangle$

Please do

not use this space, a QR code will be automatically

overlayed

P3.2-512

The proposed prototype detects and characterizes radioxenon isotope by measuring beta/CE and gamma/X-ray coincidence. We tested the system's primary parameters, including minimum detectable activity (MDA), energy calibration of both channels, energy resolution, and efficiencies quantification.

HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE

The results showed that the PIPS detector can significantly improve the resolution of the 129 keV ^{131m}Xe conversion electron peak, from about 30% FWHM for the plastic scintillator to 10%. As a result, due to the high energy resolution of the detector, we can distinguish peaks of 129 keV and 159 keV from ^{131m}Xe in scenarios where a plastic scintillator would not be able to do so. Moreover, by using silicon as a beta detector we eliminated the memory effect.

Optimizing the system, improving geometric to 4π solid angle and reducing environmental and electronic noise must be done in the future work to increase efficiency of the beta detector and improve the MDA.

References

Cagniant, A., Le Petit, G., Gross, P., Douysset, G., Richard-Bressand, H., & Fontaine, J. P. (2014). Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup. *Applied Radiation and Isotopes*, 87, 48-52.

Czyz, S. A., Farsoni, A. T., & Ranjbar, L. (2018). A prototype detection system for atmospheric monitoring of xenon radioisotopes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 884, 64-69.

Wilson, C., Sobel, P., & Biegalski, S. (2022). Coincidence measurements of radioxenon using passive implemented planar silicon (PIPS) detector. *Journal of Radioanalytical and Nuclear Chemistry*, 1-7.

Schroettner, T., Schraick, I., Furch, T., & Kindl, P. (2010). A high-resolution, multi-parameter, β – γ coincidence, μ – γ anticoincidence system for radioxenon measurement. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 621(1-3), 478-488.

Britton, R., Jackson, M. J., & Davies, A. V. (2015). Quantifying radionuclide signatures from beta gamma coincidence system. *Journal of Environmental Radioactivity*, 149(15), 8e163.

Foxe, M., Mayer, M., Couture, A., Hayes, J., Mendez, J., Ripplinger, M., ... & Wilson, R. (2022). Development of a Beta-Gamma Radioxenon Detector with Improved Beta Resolution. *Pure and Applied Geophysics*, 1-11.

Sobel, P. W., & Biegalski, S. (2022). Characterization of PIPS detectors for measurement of radioxenon. Journal of Radioanalytical and Nuclear Chemistry, 331(12), 4891-4896.

Reeder, P. L., Bowyer, T. W., McIntyre, J. I., Pitts, W. K., Ringbom, A., & Johansson, C. (2004). Gain calibration of a β/γ coincidence spectrometer for automated radioxenon analysis. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 521(2-3), 586-599.

INTRODUCTION
OBJECTIVES
METHODS/DATA
RESULTS
CONCLUSION

Please do not use this space, a QR code will be automatically overlayed