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INTRODUCTION

More efficient and selective

adsorbents for Xe
collection and purification
could provide new
alternatives for noble gas
monitoring in the IMS.

Silver-exchanged zeolites
and metal-organic
frameworks have never
been investigated to collect
and purify Xe directly from
atmospheric air.

Xe collection and purification from air in three types of

porous materials
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METHODS/DATA

Comparison of Ag-
exchanged Zeolites (AgZs),
Metal-Organic Frameworks
(MOFs) and Activated
Carbon (AC)

. Characterization by
SEM/EDX, PXRD, TGA
& N,/CO, adsorption

. Xe and air breakthrough
. Thermal desorption

RESULTS

Highest ever reported
Xe adsorption capacity
in air on AgZs

Unprecedented Xe/air
selectivity on AgZs

Decrease in Xe
adsorption on AgZs in
humid conditions

Highest Xe
concentration thermally
recovered on AgZs
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CONCLUSION

Ag-exchanged zeolites are
currently the most efficient
and selective adsorbents to
collect and purify xenon
from atmospheric air.

They could be used as a

single filter to collect and
purify xenon from dry
atmospheric air, which
could simplify and reduce
the power consumption of
IMS noble gas systems.
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19 70 23 JUNE monitoring systems
Noble gas monitoring systems are a crucial component of the International
Monitoring System (IMS) for the verification of the CTBT. They are monitoring the
atmosphere for potential radioxenon releases originating from nuclear tests. The

efficient collection and purification of trace levels of xenon in air (i.e. 87 ppb)
on porous adsorbents is essential for their detection capability.

The first systems in the IMS used pre-purification techniques to remove moisture and
CO, followed by AC columns to collect and further purify Xe. In some new systems,
AgZs have replaced some of the AC columns, after the necessary pre-purification,

due to their much higher Xe adsorption capacity at room temperature. The current |

systems require a complex and energy demanding purification process. More
efficient and selective adsorbents could simplify the systems and reduce their power
consumption. For instance, recent studies on a new class of porous materials,
namely MOFs, have demonstrated high Xe selectivity over other gas components
although in conditions different than for IMS applications.

No literature has been published about the investigation of AgZs or MOFs for the
collection and purification of Xe directly, i.e. without pre-purification, from
atmospheric air. Such a direct Xe collection and purification process could
significantly simplify the systems and reduce their power consumption.
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First time investigation into the use of AgZs and MOFs for the collection and purification of Xe
directly from atmospheric air to potentially simplify or reduce the power consumption of IMS noble
gas monitoring systems. The aim is to answer the following questions:

1. Are the adsorbents, in pelletized or granulized form, acquired in this work in agreement with &
properties reported in the literature for the same adsorbents ?
2. How efficient and selective are MOFs and AgZs, compared to AC, in collecting Xe from atmospheric air ?
3. How easy and in which purity can we thermally recover the collected Xe from the adsorbents ?
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Selection of adsorbents based on commercial availability

a) Silver-exchanged zeolites (AgZs): Ag-ETS-10 and Ag-ZSM-5
b) Activated Carbon (AC): Nusorb® GXK

c) Metal-Organic Frameworks (MOFs): HKUST-1 and Ni-DOBDC )
1. General characterizations of the acquired samples
» Morphology and composition by SEM/EDX, crystallinity by PXRD and thermal stability by TGA-MS
« Microporosity by N, adsorption isotherm at 77 K and CO,, adsorption isotherm at 273 K
2. Investigation of Xe collection at room temperature STEee

LTI | [Dew point meter
v7 [

« 250 ppm Xe in N, breakthrough in dry and *

humid (5% and 50% R.H.) conditions &
« 100 ppb Xe in N, & air breakthrough : |
1
3. Investigation of Xe purification g5 ) 1)L =
- Thermal desorption under N, after air |- L " | | Preasedo
adsorption (without Xe breakthrough) * — 7 e iﬁtﬁ‘éev’vtﬁ.%%
. B SR B— B | em
° Thermal desorptlon under N2 aﬂer adsorptlon Gas management system Adsorption test bed Detection and acquisition system
of 250 ppm Xe in nitrogen spiked with Rn-222 Experimental setup for breakthrough and thermal
desorption experiments [2]
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ppb Xe in N,) on both AgZs (m) compared to literature data

« Similar capacity in air (not shown here)

Figure 3: Significantly higher Xe/N, selectivity in air on

both AgZs (m) compared to literature data

Xe adsorption capacity (mol/kg) at 13.5 mPa
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Figure 1. Decrease in Xe adsorption capacity on AgZs by ‘i,
a factor 30 in 50% R.H. compared to dry conditions

Figure 2: Significantly higher Xe adsorption capacity (at 100

Results: xenon collection from air
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Figure 1 — Xe adsorption capacity as a function
of relative humidity on the five adsorbents.
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Figure 2 — Xe adsorption capacity (100 ppb Xe in N,) on

the adsorbents in this work compared to the literature.

Figure 3 — Xe/N, selectivity in air on the adsorbents

in this work compared to the literature.
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« Figure 4: Significantly higher Xe concentration 10°
(®) after a single thermal desorption cycle with 02 } { Ag-ETS-10
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10 ¢ Figure 5 — Xe/Rn separation during a thermal desorption
10 Y ® xo on all five adsorbents. The AgZs have a very sharp
desorption profile with regard to temperature.
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the recovered gas (containing 90% of the collected Xe in air)

after a single thermal desorption cycle.




SnT 2023

Rl e Conclusions and future work
19 10 23 JUNE

institute for I
radioelements

1. The morphology, composition, crystallinity, thermal stability and microporosity of the adsorbents
acquired in this work are in very good agreement with reported data.

2. Xe adsorption & selectivity in air: values on AgZs are significantly higher than literature data

a) BUT in humid conditions, the Xe adsorption capacity decreases significantly on AgZs ! O
3. The thermally recovered Xe (90% yield) from dry air has the highest Xe concentration using AgZs
a) AgZs are very efficient for Xe/Rn separation R
b) BUT more energy required than for MOFs/AC
o _ _ _ _ @ Xe adsorption capacity
= AgZs are promising as single filter in dry air , AEETs10
Xenon S Gl
Nusorb® GXK
collection - HKUST-1
- Further investigate the purity of the sl
recovered Xe gas over multiple cycles Xe purity =
R . - Il Ag-ETS-lO Qoztaéjeseathis
Investigate the durability of the adsorbents @ . Ag-ZSM-5 acu?;greniv#fg?y
 Investigate other, currently non-commercial, . e X s
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