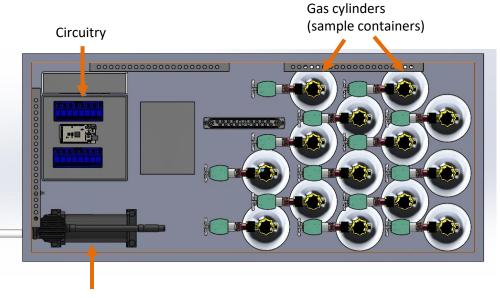
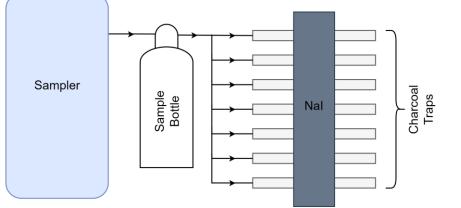

SnT2023 CTBT: SCIENCE AND TECHNOLOGY CONFERENCE HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE Modeling the use of mobile modular gas samplers in nearfield detection using HYSPLIT

Emily Gordon, Pranshu Adhikari, Derek Haas Walker Department of Mechanical Engineering, The University of Texas at Austin





Introduction: WINGS Design

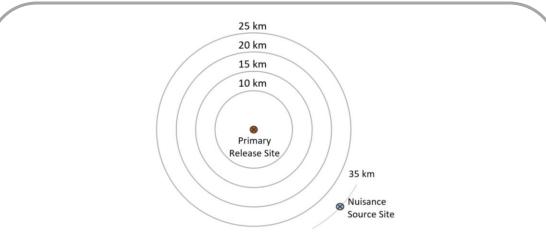
Wireless Independent Noble Gas Sampler (WINGS)

Pump

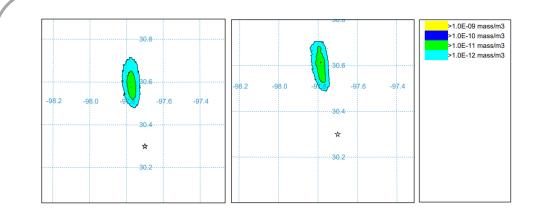
WINGS system design by UT researchers

Sample analysis using charcoal traps and Nal detector

INTRODUCTION METHODS/DATA RESULTS CONCLUSION


> Please do not use this space, a QR code will be automatically overlayed

P3.3-362



Methods: Inline WRF-HYSPLIT

Release points and radial locations of samplers (WINGS) in HYSPLIT simulations

Comparison of standard HYSPLIT model using GDAS 1° meteorological data (left) and inline WRF/HYSPLIT (right)

Simulation parameters

Parameter	Value					
No. Samplers	10, 50, 100, 250, 500					
Release Date	Mar 1, Jun 1, Sept 1, Dec 1 (2020)					
Release Duration	5 min					
Sample Collection Interval	5 min					
Simulation Duration	60 min					
Sampler MDC	10 Bq/m³ (Xe-133)					
Primary Emission	10 ¹³ Bq Xe-133					
Nuisance Emission	10 ¹⁰ Bq Xe-133					

Please do not use this space, a QR code will be automatically overlayed

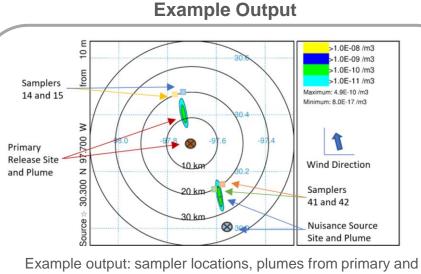
INTRODUCTION

METHODS/DATA

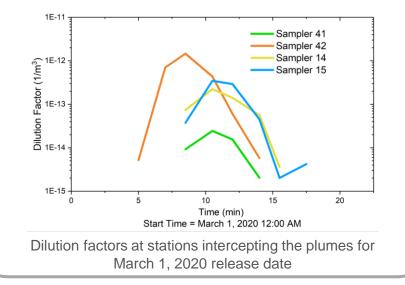
RESULTS

CONCLUSION

 $\left|\right>$


 $\langle \rangle$

P3.3-362


SnT2023 CIBIC SCIENCE AND TECHNOLOGY CONFERENCE HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE

Results

nuisance release sites for March 1, 2020 release date

Results

e.	ers	Detection							
anc	ldr	Mar		Jun		Sept		Dec	
Distance # Samplers	# San	Ρ	Ν	Ρ	Ν	Р	N	Р	Ν
10 km	500								
	250								
	100								
	50								
	10								
15 km	500								
	250								
	100								
	50								
	10								
20 km	500								
	250								
	100								
	50								
	10								
25 km	500								
	250								
	100								
	50								
	10								

Please do not use this space, a QR code will be automatically overlayed

P3.3-362

Discussion and Conclusion

Conclusions

- Detecting plumes entering or leaving an area of interest is feasible using WINGS.
- With thinner networks (fewer samplers), plumes will escape without detection
- Sampler networks placed closer to primary site had a higher chance of detecting the primary plume but higher dilution factors for plumes traveling from the nuisance release point

Continuation of Work

- Reduce granularity in parameter values
- Increase number of simulations for quantitative analysis
- Extend analysis to include other Xe isotopes

Acknowledgments

This Low Yield Nuclear Monitoring (LYNM) research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge important interdisciplinary collaboration with scientists and engineers from LANL, LLNL, NNSS, PNNL, and SNL.

References [Optional slide Font: Arial Regular Size 20]

Shah, K. A., Gordon, E. M., Adhikari, P., Allen, M. I., Anderson, N. D., Bekker, J., ... & Haas, D. A. (2022). Portable modular gas samplers for nuclear explosion monitoring. *Journal of Radioanalytical and Nuclear Chemistry*, 1-6.

Gordon, E. M., Adhikari, P., & Haas, D. A. (2022). Modeling the use of mobile modular gas samplers in near-field detection. *Journal of Radioanalytical and Nuclear Chemistry*, 1-6.

