
Development of software simulation pipeline for high
resolution atmospheric transport modeling

Don Morton1, Anne Tipka2, Jolanta Kusmierczyk-Michulec2,
Robin Schoemaker2

1Boreal Scientific Computing, Fairbanks, Alaska, USA
2CTBTO, Vienna, Austria

This is an overview of an
ongoing project to build a

robust, easy-to-use,
Atmospheric Transport

Modeling (ATM) system for
custom, high-resolution

scenarios

P3.4-488

Implementation was based
on creation of a layered
architecture, presenting

loosely-coupled
components to the user,
with rigorous, repeatable

testing.

A workflow driver has been
implemented, presenting

users with the tools to
define custom workflows

within a workflow namelist

The project is ongoing, with
current emphasis on "filling

in gaps" and packaging
according to best practices.

Please do not
use this

space, a QR
code will be

automatically
overlayed

Introduction

P3.4-488

Please do not
use this

space, a QR
code will be

automatically
overlayed

The Flexpart Atmospheric Transport Model (ATM) is
traditionally driven by ECMWF and GFS meteorological
model inputs. Flexpart-WRF is a variant of the standard
model that accepts a wide range of WRF-generated
meteorological inputs to support very high-resolution
simulations over customised domains. The chain of
activities needed to produce custom met files from WRF
and feed them to Flexpart-WRF for a successful
simulation is complex and prone to failure for a number of
reasons, and the work described here is aimed at
packaging all of the complexity into an easy-to-use
system.

Building on the experiences gained from an exploratory
prototype system built several years ago, this Enhanced
High Resolution Atmospheric Transport Model (EHRATM)
system is being developed in a Python-driven
environment to support relatively simple and
straightforward simulations to complex simulations with
special requirements. Adopting the philosophy of some
other well-known Python packages, our goal is to “make
easy things easy and hard things possible.”

Objectives

P3.4-488

Please do not
use this

space, a QR
code will be

automatically
overlayed

The original HRATM was designed and well-implemented
to primarily support a linear workflow of setting up and
running a WRF simulation in order to generate custom
meteorological data, and then to run Flexpart WRF using
the custom met data. With some postprocessing for
graphics production and generation of SRS-format output
(used by CTBTO in many postprocessing activities), users
are able to execute this workflow with a relatively simple
command line interface.

Although the original HRATM has some support for
performing partial workflows (doing some of the workflow
at one time, and following up later with the rest of the
workflow) for convenience, flexibility, and debugging, users
expressed a need for much greater flexibility to substitute
new and/or experimental components.

These needs for greater flexibility led to one of the primary
design goals in the Enhanced HRATM (EHRATM) – the
creation of a modular ecosystem of loosely-coupled
distributed model components that could be inserted and
removed in a plug and play fashion.

 The primary objectives for this work are to

• build a Python package, nwpservice, of low-level
WRF and Flexpart WRF components that can be
executed and rigorously tested in standalone mode,
independent of the other nwpservice components
(in other words, loosely-coupled)

• build a higher-level Python package, ehratm, that
provides the APIs for creating a custom workflow
from the nwpservice components. Such a workflow
is defined by a standard Fortran namelist file, and
can range from specification of a single task based
on a single nwpservice component, to a full
workflow from WRF input to Flexpart WRF output.
This package, too, has a number of components
that undergo heavy unit and functional testing.

• build a prototype workflow driver, ehratmwf.py, that
takes as a single argument the path to a user-
created namelist file and runs the specified
workflow. Additionally, implement a test
environment of repeatable scenarios.

Methods (Slide 1 of 2)

P3.4-488

Please do not
use this

space, a QR
code will be

automatically
overlayed

The nwpservice Python package is a collection of
low-level, standalone components designed to
operate as plug and play components of custom
workflows.

Each component is specified by a well-defined
Python API that allows it to be run by itself for
operational, experimental or debugging activities.
Extensive unit and functional testing provide a
rigorous check on the correctness of the components,
especially as they undergo future modifications.

Example of plug and play nwpservice components assembled into useful workflow

Example of
initialisation and use
of single nwpservice
ungrib component for
WRF preprocessing

Methods (Slide 2 of 2)

P3.4-488

Please do
not use this
space, a QR
code will be
automaticall
y overlayed

The ehratm Python package is a collection of higher-
level, standalone components intended to be called
by ehratm worfklow drivers, handling many of the
details so that, ultimately users only need to worry
about creating correct workflow namelists
(wfnamelist) for their custom projects.

Like the lower-level nwpservice components, the
ehratm components are heavily instrumented with
unit and functional tests.

Stack architecture of the workflow components, depending on the ehratm components, which
depend on the foundational nwpservice components. Each column’s functionality is independent
of the others, supporting the design goal of loosely-coupled distributed components.

Abstraction of the ehratm / nwpservice stack architecture. The nwpservice
components may be called by any conforming software, and ehratm is one such
collection. nwpservice depends on correctly installed distributions of the NWP
models, and this installation is scripted in a repeatable way

Results

P3.4-488

Please do
not use this
space, a QR
code will be
automaticall
y overlayed

An EHRATM workflow driver (ehratmwf) is the top-level software
component. It reads, parses and verifies the user-defined
wfnamelist and runs the workflow components as defined in the
workflow_list and the individual sections of the wfnamelist.

A Command Line Interface (CLI) batch processing test driver will
execute and report on status of a large collection of test cases.

Conclusion

P3.4-488

Please do not
use this

space, a QR
code will be

automatically
overlayed

This project is ongoing (and always will be), but the core functionality of a set of loosely-coupled distributed
components, driven by namelist-specified workflow directives has been accomplished and tested rigorously.
Continued work includes packaging up the experimental, prototype software into a best-practices environment with
web-based documentation.

