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Seismic waveforms are 
generally contaminated by 

noise from various sources, 
which interfere with signals 

of interest. We 
implemented and applied 
several noise suppression 

methods. That were all 
subjected to the same 
analyses and level of 

scrutiny using the same set 
of metrics.
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The denoising methods 
consist of nonlinear 

thresholding of continuous 
wavelet transforms (CWT), 

convolutional neural network 
denoising (CNN denoising), 

and frequency filtering 
(acausal & causal). The data 
we used are local and near 

regional data recorded by the 
University of Utah 

Seismograph Stations 
(UUSS) network.

On average CWT and CNN 
denoising, and bandpass filtering 
improve the SNR by about 20, 14 
dB and 9 dB, respectively. CNN 
denoising has unrivaled 
capability of conserving the 
amplitude information. In contrast 
to causal filtering, zero-phase 
filtering and the other methods 
do not result in phase change.
CNN denoising allow more picks 
to be made compared with other 
approaches.

In terms of degree of 
fidelity to the ground truth 

waveforms, CNN denoising 
outperforms both CWT 

denoising and frequency 
filtering. If the purpose of 
the analysis is to exploit 
amplitude information for 

magnitude, yield, or 
moment tensor estimation, 
CNN denoising would be 

the most suitable approach.
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 Recorded seismic data are generally contaminated by various types of noise (cultural or 
natural).

 Despite significant progress in seismic data analysis, the separation of signal and noise 
remains a fundamental problem.

 In the seismology community, frequency filtering is the most commonly used method for 
noise suppression.

 Frequency filtering can be problematic when the signal of interest and noise occupy the 
same region in the frequency domain.

 We implemented and applied 3 classes of noise suppression methods using seismic data 
recorded at local to near-regional distances.

 The methods consist of approaches based on:
o Non-linear thresholding of continuous wavelet transforms (CWT),
o Convolutional Neural network (CNN) denoising, and 
o Frequency filtering (causal & acausal).

 The denoising approaches are compared by subjecting them to the same analyses and level 
of scrutiny using the same set of evaluation metrics.
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Objectives
 To explore which noise suppression methods work 

best, using data recorded at local and near-regional 
distances in Utah, we implemented and applied 5 
denoisers based on CWT nonlinear thresholding, CNN 
deep denoising, or frequency filtering.

 We used a set of metrics, criteria, and the same 
dataset to evaluate and compare the performance of 
these noise suppression approaches.

 The implications of the obtained results are discussed 
in relationship with the end goals of potential 
analyses. 

 We believe that the findings discussed in this paper 
will guide analysts in choosing the suitable noise 
suppression method that is appropriate for the end 
goal of their analyses.

Evaluation Metrics
 Correlation Coefficient (CC) from non-zero lag cross 

correlation
o Measures the similarity between the recovered 

waveform and the ground truth (GT)
 Signal-to-Noise Ratio (SNR in dB)

o Using 9-sec window for both signal and noise

𝑆𝑆𝑆𝑆𝑆𝑆 = 20 log10
𝐴𝐴𝑆𝑆
𝐴𝐴𝑁𝑁

(1)

 Signal-to-Distortion Ratio (SDR in dB)
o Measures the amplitude distortion with respect to GT

𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log10
𝑊𝑊𝐺𝐺𝐺𝐺

2

�𝑊𝑊−𝑊𝑊𝐺𝐺𝐺𝐺 2 (2)

𝑊𝑊𝐺𝐺𝐺𝐺 - Ground truth waveform; �𝑊𝑊 - Recovered (denoised) 
waveform, corrected for time shift

 Phase change (φ in radians)
φ = 2π𝑓𝑓δ𝑡𝑡 (3)

δ𝑡𝑡 – Estimated time shift in seconds; 𝑓𝑓– Frequency set to 
15 Hz (high-cut of chosen BP filter)
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Methods
 CWT Denoising

• Noise is assumed to be stationary throughout the waveform
• Pre-event window is used to estimate the scale dependent (non-

linear) threshold

 CNN Denoising
• The approach uses a trained deep convolutional neural network 

model to decompose an input waveform into signal of interest 
and noise.

CWT Denoising

CNN Denoising

 Frequency Fileting
• We used  a 4-pole Butterworth-bandpass filter (2−15 Hz), as implemented in Obspy (Beyreuther

et al., 2010). 
Data

To evaluate the denoising methods, we used constructed noisy waveforms, each generated by 
summing a high-SNR seismogram and a randomly selected noise waveform

• Pure signal waveforms consists of local and near-regional recordings from the UUSS
• Noise waveforms also from UUSS, carefully curated to not contain event signals



RESULTS
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 For frequency filtering (purple & black), the SNR gain of the processed 
waveform decreases quickly  with decreasing SNR of the input seismogram (b). 

 CNN denoiser (red) is capable of denoising a waveform with a SNR floor of 
approx. 0 dB (b).

 Causal filtering (black) is associated with significant changes in waveform 
shape (CC of only ∼ 0.7) (c).

 CNN denoising (red) has unrivaled capability of conserving the amplitude 
information at input SNRs > 14 dB (See signal-to-distortion (SDR) values in (d)).

 In contrast to causal filtering (black), zero-phase  filtering (purple) and the 
other methods do not result in phase change (e).

Effect of Input Seismogram Quality

Onset-time Determination
 CNN denoising allows more 

picks to be made compared 
with other approaches, and is 
on par with the expert-analyst’s 
best filters (bar labeled 
ANALYST).

 The CWT techniques are more 
likely to introduce artifacts that 
made the waveforms unusable.

 Most of the picks determined for each method are 
consistent with the expert- analyst’s best filters 
(modes of the distributions are all close to 0).

This is reflected in the low proportion (∼47−52%) of picks that our expert-
analyst was able to make for these methods. 

 The larger mean differences 
(0.20−0.23 s in absolute sense) 
and standard deviations 
(±0.88−1.34 s ), which 
contrasts to the median values 
of ∼0 s, suggest that the 
estimated differences for CNN 
denoising and causal bandpass 
filtering contain non-negligible 
numbers of outliers. 



CONCLUSIONS AND IMPLICATIONS
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 For frequency filtering, the improvement in SNR decreases quickly with decreasing input SNR and below an input SNR 
of ∼32 dB the improvement is relatively marginal.

 On average CWT and CNN denoising, and bandpass filtering improve the SNR by about 20, 14 dB and 9 dB, 
respectively. 

 In terms of waveform similarity and amplitude distortion for the recovered waveforms with respect to the ground 
truth (GT) seismograms, CNN denoising outperforms both CWT denoising and frequency filtering.

 Also, the average correlation coefficient value is low for the seismograms processed with causal frequency filtering, 
which suggests that these waveforms are different from their respective GTs, i.e., significant changes in waveform 
shape have occurred.

 Like zero-phase filtering, little to no phase shift 
occurs for CWT and CNN denoising. This 
contrasts to causal filtering that is associated 
with significant phase shifts.

 CNN denoising allows more picks to be made 
compared with frequency filtering or CWT 
denoising, and is on par with the expert-
analyst’s processing, which is consistent with 
the current operational procedure.
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