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There are several different
approaches for estimating
radioxenon activity by
analyzing beta-gamma
coincidence spectra.
It is necessary to compare
methods for obtaining more
stable and accurate results,
especially in the case of
poor statistics.
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The most important and 
general approaches to 

activity estimates based on 
beta-gamma spectrum data 

were considered.

Some calculations were 
carried out on the MIKS 

data using various 
methods. Comparison 

between XeMat and NCC
showed good agreement.

We recommend using 
methods with ROIs, since 

they are much more resistant 
to perturbations. Matrix 
methods (LS) are very 

convenient for calculating 
errors and the MDC. The 

Bayesian approach allows us 
to use a priori knowledge 

about the background 
activities of isotopes, which 
potentially provides the best 

result.
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Some detection systems like the Russian MIKS system, create 2D β-γ coincidence energy

spectra using a plastic scintillator cell to detect conversion electrons and betas and a NaI(Tl)

crystal to detect gamma- and X-rays. These β-γ spectra are used to estimate the activity of the

radioxenon isotopes in the air.

Some approaches to estimating the activity using beta-gamma spectra are:

• the Net Count Calculation (NCC) method;

• matrix methods;

• the Standard Spectrum Method.

If the counting rate is high, all methods are consistent and similar. Differences will be visible

only for low statistics.

Estimation of the activity at low statistics is a difficult problem. Detector calibration drift

distorts spectra. Another important problem is the interference of spectra of relevant xenon and

radon isotopes.

It is necessary to compare methods for obtaining more stable and accurate results,

especially in the case of poor statistics.
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Example: 7 ROIs 
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ROI1

ROI2

ROI3

ROI5 ROI6 ROI4ROI4

#Ratios

PB214   1  0  0.50000

PB214   1  1  1.000000

PB214   1  2  0.650000

PB214   1  3  1.380000

PB214   1  4  0.080000

PB214   1  5  0.060000

PB214   1  6  0.060000

XE135   2  0  0.103000

XE135   2  1  0.026000

XE135   2  2  1.000000

XE135   2  3  0.042000

XE135   2  4  0.007000

XE135   2  5  0.022000

XE135   2  6  0.103000

XE133   3  0  0.103000

XE133   3  1  0.326000

XE133   3  2  0.136000

XE133   3  3  1.000000

XE133   3  4  0.007000

XE133   3  5  0.022000

XE133   3  6  0.103000

XE131m  4  0  0.103000

XE131m  4  1  0.326000

XE131m  4  2  0.136000

XE131m  4  3  0.042000

XE131m  4  4  0.007000

XE131m  4  5  0.022000

XE131m  4  6  0.103000

1r 2r 3r 4r 5r

Creating ROIs and grouping spectral data lead to loss of

information and increase the robustness.

• ROIs should not overlap;

• ROIs should contain only the useful signal and give orthogonal 

spectra vectors;

Simultaneous fitting of ROIs is derivative from the standard spectrum method
The region-of-interest approach is more resistant to gain shift
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Taking into account the gas background (memory effect) in the regression 

equation in matrix form
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To account for the gas background, it is necessary to introduce extended spectrum vectors, which

consist of the sample spectrum and the gas background. The regression matrix is also transformed.

Thus, the problem of taking into account the gas background is also reduced to a linear regression.

Usually the sensitivity matrices of the gas background and samples are equal ( ); however, in

general it is possible to take into account the difference

SAMPLE spectrum

GASBK spectrum Amount of memory activity in 
GASBK 

Net signal: exceeding the total 
background

DETBK spectrum

Matrix of corrections for accounting for
the gas background in the sample
measurement
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Transformation from regression solutions to activities in the matrix form 

(the XeMat algorithm is used for MIKS)
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Standard correction factors in matrix form
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The WLS method allows use of the matrix form for solution and covariance matrix for uncertainties 
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Uncertainties (WLS matrix approach) 

A confidence k-dimensional ellipsoid around an activity vector with confidence probability p can be 

represented as
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First-order uncertainty propagation formula for ratios
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We need methods of combining the achieved levels of significance p-value (multiple comparisons

problem). To test the joint hypothesis H0: against the one-sided alternative, you can for example use 

the statistic , which takes into account the correlation relationships of the parameters
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on statistics 2 3
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It is known that the markers of the nature of a nuclear event are the activity ratios of 133Xe and 135Xe,
131mXe and 133mXe

Using the obtained SD estimates for ratios, we can use the z-test 

• Monte-Carlo and bootstrap.

A more accurate calculation uncertainty of ratio
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XeMatrix is a software tool developed by VNIIA for MIKS. It utilizes the standard-spectrum and 

simultaneous-fitting methods for the purpose of analyzing β-γ coincidence radioxenon spectra. Spectra 

are read in the International Monitoring System (IMS) pulse height data (PHD) format. The final result is 

the activity and activity concentration for 135Xe, 133Xe, 131mXe, and 133mXe.

All of the above formulas are implemented in the XeMat algorithm:

• the library of reference β-γ spectra saved in the R matrix in view of the efficiency normalization; 

• unmixing calculation for the sample and gas-background spectra, which allows one to control the 

goodness of fit and blunders of background variations (estimates should not differ widely from each 

other);

• the closed form of the LS approach and the covariance matrix are used to calculate the errors;

• the ability to set a priori thresholds for detection of each nuclide: the MDA and MDC depend on the 

priori knowledge of the presence of nuclides.

XeMat software
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• We studied possible approaches to estimating the activity using unmixing beta-gamma spectra:

frequentist and bayesian.

• The maximum likelihood (Poisson) approach will have the advantage over the least squares method

when the counting rate is very low and the background is well known. But only the LS method has a

closed-form and covariance matrix. Matrix methods (LS) are very convenient for calculating errors

and the MDC.

• Regions of interest should be set based on the efficiency vs. robustness tradeoff. We recommend

using methods with ROIs, since they are much more resistant to perturbations.

• The Bayesian approach allows us to use a priori knowledge about the background activities of

isotopes, which potentially provides the best result. It is worth noting that the choice of a positive flat

a priori distribution is not quite realistic such a priori does not take into account the probability of the

absence of any component in the mixture.

• Comparison between XeMat and the NCC shows good agreement.


