
Performance Enhancement of Flexpart Atmospheric 
Transport Model for GPU Environment

Don Morton1, Wolfgang Sommerer2, Jolanta Kusmierczyk-
Michulec2, Robin Schoemaker2, Anne Tipka2

1Boreal Scientific Computing, Fairbanks, Alaska, USA
2CTBTO, Vienna, Austria

This is an overview of an 
ongoing EU-funded project 

to enhance the 
performance of the 

Flexpart Atmospheric 
Transport Model by using 

Graphical Processing Units 
(GPUs)

P4.3-486

This section outlines the 
full workflow from GPU 
software installation, to 

setting up baseline 
Flexpart case, to 

compilation, execution, and 
first steps of OpenACC 

usage

Description of various 
problems and solutions, 
creation of test mockup, 

and ongoing results

This continues to be a work 
in progress.  Much has 

been accomplished, and 
there is still much to do for 
verification of correctness 

and performance 
enhancement.  Additional 
work includes preliminary 

test on Flexpart 11

Please do not 
use this 

space, a QR 
code will be 

automatically 
overlayed



Introduction

P4.3-486

Please do not 
use this 

space, a QR 
code will be 

automatically 
overlayed

  

The CTBTO Atmospheric Transport Modeling (ATM) 
group runs a large number of compute-intensive 
operational simulations on a daily basis in support of 
its mission.

The foundation of the simulations is the legacy 
Flexpart Lagrangian transport and dispersion model, 
which has undergone extensive modifications and 
enhancements in its 25 years.

With the recent CTBTO acquisition of GPU hardware, 
it was decided to explore the usefulness of modifying 
Flexpart for the new hardware in anticipation of 
shorter simulation times.

Previously, groups have explored Flexpart 
parallelisation with MPI (distributed memory) and 
OpenMP (shared memory) methods, finding that the 
most computationally-expensive components of the 
code are the processing of large GRIB datasets for 
the input of meteorology, and the computation of new 
particle positions at each timestep.

In this project, we aim to explore the application of 
GPU programming to Flexpart for the first time.  

  

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.126.02   Driver Version: 418.126.02   CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  Off  | 00000000:06:00.0 Off |                    0 |
| N/A   28C    P0    44W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla V100-SXM2...  Off  | 00000000:07:00.0 Off |                    0 |
| N/A   29C    P0    44W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  Tesla V100-SXM2...  Off  | 00000000:0A:00.0 Off |                    0 |
| N/A   29C    P0    42W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  Tesla V100-SXM2...  Off  | 00000000:0B:00.0 Off |                    0 |
| N/A   26C    P0    42W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   4  Tesla V100-SXM2...  Off  | 00000000:85:00.0 Off |                    0 |
| N/A   28C    P0    44W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   5  Tesla V100-SXM2...  Off  | 00000000:86:00.0 Off |                    0 |
| N/A   29C    P0    44W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   6  Tesla V100-SXM2...  Off  | 00000000:89:00.0 Off |                    0 |
| N/A   29C    P0    43W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   7  Tesla V100-SXM2...  Off  | 00000000:8A:00.0 Off |                    0 |
| N/A   27C    P0    43W / 300W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

From NVIDIA Tesla V100 GPU ArchitectureFrom International Monitoring System (CTBTO)



Objectives

P4.3-486

Please do 
not use this 
space, a QR 
code will be 
automaticall
y overlayed

This is an exploratory venture intended to utilise newly-
installed GPU hardware for the performance 
enhancement of the complex atmospheric transport 
model, Flexpart.  

Several groups have previously  implemented 
parallelism in Flexpart using MPI for distributed 
processing and OpenMP for a shared-memory 
paradigm.  Through this work it has been recognized 
that the most logical components for Flexpart 
parallelisation are the ingest and processing of 
meteorological data files, and the computation of new 
particle positions through the timestepping process.  

Before jumping into the GPU paradigm, it needs to be 
understood that this is simply another parallel 
paradigm, and as such, performance enhancement is 
limited – more than we often think – by the code that is 
inherently sequential.  

Still, in a saturated operational environment, even 
“some” performance improvement will lead to the ability 
to run more workload. 

 The primary objectives for this work are to

• establish a functional GPU-based development and 
testing environment on the new CTBTO system

• use the current CTBTO Flexpart code to establish a 
baseline for model output and performance, serving 
as a control for subsequent development and 
testing

• conduct a performance analysis of the current 
CTBTO Flexpart code to find the computational “hot 
spots,” and determine which part of the code will be 
targeted for GPU optimization

• create a development / test mockup environment of 
the targeted code to facilitate rapid and iterative 
experimentation of promising methods

• implement, test and assess the GPU-optimised 
code



Methods/data (1 of 2)

P4.3-486

Please do not 
use this 

space, a QR 
code will be 

automatically 
overlayed

Gfortran compilation and execution of the original 
Flexpart-CTBTO was performed, creating a baseline by 
which to compare results and performance of the future 
GPU-instrumented code.

Installation of full NVIDIA HPC SDK in user space was 
surprisingly straightforward, but in order for it to work 
correctly, compatible low-level NVIDIA libs must be 
installed at root-level.  This was all subsequently tested 
on a basic linear algebra code in serial, CUDA and 
OpenACC to ensure a correct development 
environment.

Initial attempts at compilation with the NVIDIA HPC 
nvfortran were problematic with both minor and major 
issues needing to be resolved.  One issue – limiting the 
size of the problems we could handle -  required a bug 
report to NVIDIA with a subsequent fix in the next 
release of the compiler.  An additional problem is 
currently being considered for a bug report.

Numerical and visual comparison of the gfortran vs 
nvfortran codes was performed with satisfactory results.



Methods/data (2 of 2)

P4.3-486

Please do not 
use this 

space, a QR 
code will be 

automatically 
overlayed

Profiling of the code with custom and NVIDIA-supplied tools 
suggested – with little surprise – that the most promising 
component for GPU-isation was the primary particle 
computation loop.  

In a perfect world, all iterations would be independent of 
each other, and a simple OpenACC directive would 
accomplish our parallelisation with five minutes of effort.

However, in Flexpart, this code has a deep hierarchy of 
subroutine and function calls, and they are all highly-
dependent on each other through their use of over 200 
global variables defined in various Fortran modules.

Partial (1/2) call-tree 
for allparticles loop



Results

P4.3-486

Please do 
not use this 
space, a QR 
code will be 
automaticall
y overlayed

Knowing that this work would require huge amounts of experimentation and 
iteration, it was deemed essential to extract the allparticles loop into a 
simpler, fast-executing standalone test program, initialised by a dump of 
intermediate values from a full Flexpart run.

The application of OpenACC directives – just to get it to compile and 
execute – has been quite complicated and tedious, requiring many 
directives, and the creation of a spreadsheet to maintain an inventory of all 
200+ global module variables referenced in the underlying code.

Current status is that compilation (with the discovery of another nvfortran  
compiler bug) and execution of the full particles loop has been 
accomplished.  It’s doubtful that computations are correct or efficient, and 
this is what needs to be explored next.

 



Conclusions

P4.3-486

Please do not 
use this 

space, a QR 
code will be 

automatically 
overlayed

We knew this was going to be difficult for many reasons, and we knew that even upon completion, Amdahl’s 
Law would significantly limit overall speedups that could be obtained.

However, given the popularity of Flexpart and its long legacy for 25 years, and its complexity, we see it as an 
opportunity to explore and report on – for better and worse – issues related to parallelisation in general, and 
GPU-isation specifically

 This continues to be a work in progress.  Upcoming activities include  

• Evaluate – and revise current test code where necessary – the correctness of outputs and the 
performance of the new code

• Time permitting, experiment with cleaner allparticles loops, where iterations are truly independent 
(requires immense code refactoring)

• Apply what we have learned to the evolving Flexpart 11 in order to assess the value of continued 
efforts in this area


