SnT 2023

CTBT: SCIENCE AND TECHNOLOGY CONFERENCE

HOFBURG PALACE - Uienna and Online

19 70 23 JUNE

INTRODUCTION

This is an overview of an
ongoing EU-funded project
to enhance the
performance of the

Flexpart Atmospheric
Transport Model by using
Graphical Processing Units
(GPUs)

IMJH.i;Jl.JMI’IM il HHHIW\

Performance Enhancement of Flexpart Atmospheric
Transport Model for GPU Environment

Don Morton’, Wolfgang Sommerer?, Jolanta Kusmierczyk-

Michulec?, Robin Schoemaker?, Anne Tipka?
'Boreal Scientific Computing, Fairbanks, Alaska, USA

METHODS/DATA

This section outlines the
full workflow from GPU
software installation, to
setting up baseline
Flexpart case, to
compilation, execution, and

first steps of OpenACC
usage

2CTBTO, Vienna, Austria

RESULTS

Description of various

problems and solutions,
creation of test mockup,

and ongoing results

\Huhm“ il M\ 11‘| L

CONCLUSION

This continues to be a work
in progress. Much has
been accomplished, and

there is still much to do for

verification of correctness
and performance

enhancement. Additional

work includes preliminary
test on Flexpart 11

Please do not
use this
space, a QR
code will be
automatically
overlayed

lh“'

SnT 2023

CTBT: SCIENCE AND TECHNOLOGY COMFERENCE

HOFBURG PALACE - Uienna and Online Introduction
19 70 23 JUNE

)
-

The CTBTO Atmospheric Transport Modeling (ATM)
group runs a large number of compute-intensive
operational simulations on a daily basis in support of
its mission.

= S &5 CTBTO | ii:Eers
International Monitoring System g

The foundation of the simulations is the legacy
Flexpart Lagrangian transport and dispersion model,
which has undergone extensive modifications and
enhancements in its 25 years.

With the recent CTBTO acquisition of GPU hardware, (METHODS/DATA)
it was decided to explore the usefulness of modifying P .
FIeXpart for the new hardware in antiCipation Of | NVIDIA-SMI 418.126.02 Driver Version: 418.126.02 CUDA Version: 10.1 | RESULTS

GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC _

Shorter S|mU|at|0n tlmeS. Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.

0 Tesla V100-SXM2... Off 00000000:06:00.0 Off 0

N/A 28C PO 44W / 300W OMiB / 32480MiB 0% Default

Previously, groups have explored Flexpart

! |
| |
e L e R R +
parallelisation with MPI (distributed memory) and | 1 Tesla v100-SXM2... Off | 00000000:07:00.0 Off | 0|
o | N/JA - 29C PO 440 [300W | OMiB / 32480MiB | 0% Default
OpenMP (shared memory) methods, finding that the Hooesessiiiooiiiiosiiiiiioos Heraiiiiieiioiiioasss dooeseosiennonnies +
j . [2 Tesla V100-SXM2... Off | 00000000:0A:00.0 Off | 0 |
most computationally-expensive components of the | N/A29C PO 420 / 306W | OMiB / 32480MiB | 0% Default |
. Fommm s s s e e I I Fo-mm s +
code are the processing of large GRIB datasets for |, Tesla vieo-suwe .. Off | aaoesged:an:ae.o off | , erant’ |
. . N/A 6 42W W M1 480M1 % t
the input of meteorology, and the computation of new AR s gt - e bt S M
. " . | 4 Tesla V100-SXM2... Off | 00000000:85:00.0 Off | 0 |
particle positions at each timestep. | NJA 28C PO 444 [300W | OMiB / 32480MiB | 0% Default | Please do not
___ th'
T 5 Tesla V100-SXM2... Off T 00000000:86:00.0 Off T 0 T spﬁ: aIZR
. 29C 0 300 OM{ 32480Mi 0% faul i
In this project, we aim to explore the application of %-WE--;-i--;;Z(;-;;pf-“’-{-g);!-“-f-(;f;f;(;(;(ffgﬁ-(;f(;-gii-{ '??.‘i’?-g-f adamills
H H H esla - H H .
GPU programming to Flexpart for the first time. | N/A 29C PO 43W / 300W | OMiB / 32480MiB | 0% Default | overigyey
177 Tesla Viso-sxM2... OFf | 00000000:8A:00.0 OFF | o]
| N/A 27C PO 43W / 300W | OMiB / 32480MiB | 0% Default | P4.3-486
e L B e +

SnT2023

HOFBURG PALACE - Vienna and Online

19 10 23 JUNE

This is an exploratory venture intended to utilise newly-
installed GPU hardware for the performance
enhancement of the complex atmospheric transport
model, Flexpart.

Several groups have previously implemented
parallelism in Flexpart using MPI for distributed
processing and OpenMP for a shared-memory
paradigm. Through this work it has been recognized
that the most logical components for Flexpart
parallelisation are the ingest and processing of
meteorological data files, and the computation of new
particle positions through the timestepping process.

Before jumping into the GPU paradigm, it needs to be
understood that this is simply another parallel
paradigm, and as such, performance enhancement is
limited — more than we often think — by the code that is
inherently sequential.

Still, in a saturated operational environment, even
“some” performance improvement will lead to the ability
to run more workload.

Objectives

The primary objectives for this work are to

establish a functional GPU-based development and
testing environment on the new CTBTO system

use the current CTBTO Flexpart code to establish a
baseline for model output and performance, serving
as a control for subsequent development and
testing

conduct a performance analysis of the current
CTBTO Flexpart code to find the computational “hot
spots,” and determine which part of the code will be
targeted for GPU optimization

create a development / test mockup environment of
the targeted code to facilitate rapid and iterative
experimentation of promising methods

implement, test and assess the GPU-optimised
code

INTRODUCTION
0BJECTIVES
METHODS/DATA

RESULTS

CONCLUSION

7 D
™)

Please do
not use this
space, a QR
code will be
automaticall
y overlayed

P4.3-486

SnT 2023

HOFBURG PALACE - Vienna and Online

19 10 23 JUNE

Gfortran compilation and execution of the original
Flexpart-CTBTO was performed, creating a baseline by
which to compare results and performance of the future
GPU-instrumented code.

Installation of full NVIDIA HPC SDK in user space was
surprisingly straightforward, but in order for it to work
correctly, compatible low-level NVIDIA libs must be
installed at root-level. This was all subsequently tested
on a basic linear algebra code in serial, CUDA and
OpenACC to ensure a correct development
environment.

Initial attempts at compilation with the NVIDIA HPC
nvfortran were problematic with both minor and major
issues needing to be resolved. One issue — limiting the
size of the problems we could handle - required a bug
report to NVIDIA with a subsequent fix in the next
release of the compiler. An additional problem is
currently being considered for a bug report.

Numerical and visual comparison of the gfortran vs
nvfortran codes was performed with satisfactory results.

Methods/data (1 of 2)

integer :: idummy = -T
real 11 settling = @.
% nvfortran -c -acc -Minfo=acc aplay2.fae

NVFORTRAN-W-0155-Compiler failed to translate accelerator region (see -Minfo
messages): No device symbol for address reference (aplay2.f9e: 1)
advance:
1, Generating acc routine seq
Generating NVIDIA GPU code
NVFORTRAN-F-07084-Compilation aborted due to previous errors. (aplay2.f90)

integer :: idummy
real :: settling An example of a common
Fortran construct that
‘ nvfortran sometimes rejects
Sdumy = 7| e
settling = 8.

gfortran vs nvfortran, end of 10-day fwd simulation

Spec: TRACER, P01 - -34.54 § -58.47 Spec: TRACER, Release: ARPD
2014-05-19 21, 014-05-1 S

INTRODUCTION
0BJECTIVES
METHODS/DATA

RESULTS
CONCLUSION

Please do not
use this
space, a QR
code will be
automatically
overlayed

P4.3-486

SnT 2023

CTBT: SCIENCE AND TECHNOLOGY COMFERENCE

HOFBURG PALACE - Vienna and Online

19 10 23 JUNE

Profiling of the code with custom and NVIDIA-supplied tools
suggested — with little surprise — that the most promising
component for GPU-isation was the primary particle
computation loop.

In a perfect world, all iterations would be independent of
each other, and a simple OpenACC directive would
accomplish our parallelisation with five minutes of effort.

However, in Flexpart, this code has a deep hierarchy of
subroutine and function calls, and they are all highly-
dependent on each other through their use of over 200
global variables defined in various Fortran modules.

ISACC kernels
do j=1,numpart

! If integration step is due, do it
1 ok i i e ook e ok 2 ke ook o o ok vk ok ok o ok Rk

if (itral(j).eq.itime) then

endif

end do !loop over particles
[SACC end kernels

Methods/data (2 of 2)

24 hours, 4 releases, 10M particles

ECMWF, 0.5 degree

GFS, 0.5-degree

TOTAL SECONDS: 1134.81

gridcheck_cum_secs: 47.19 (4.2%)
timemanager_cum_secs: 1884.65 (95.6%)

----- Reading/processing met data ----
getfields_cum_secs: 683.61 (608.3%)
readwind_cum_secs: 501.19 (44.2%)
verttransform_cum_secs: 54.49 (4.8%)
calcpar_cum_secs: 91.08 (8.0%)
calcpv_cum_secs: 64.43 (5.7%)

----- Particle computations ----
allparticles_cum_secs: 349.27 (30.8%)
conccalc_cum_secs: 49.79 (4.4%)

TOTAL SECONDS: 513.73
gridcheck_cum_secs: 4.46 (0.9%)
timemanager_cum_secs: 507.39 (98.8%)

----- Reading/processing met data ----
getfields_cum_secs: 157.98 (30.8%)
readwind_cum_secs: 88.15 (17.2%)
verttransform_cum_secs: 27.45 (5.3%)
calcpar_cum_secs: 26.86 (5.2%)
calcpv_cum_secs: 15.43 (3.8%)

-—--- Particle computations ----
allparticles_cum_secs: 306.09 (59.6%)
conccalc_cum_secs: 41.54 (8.1%)

\ -
—
-
.
LY
3
LY
- - o
L.
-
- -
- - -
|
T i
- - -
- L L

ir

Partial (1/2) call-tree
for allparticles loop

putih o

INTRODUCTION
0BJECTIVES
METHODS/DATA

RESULTS

CONCLUSION

Please do not
use this
space, a QR
code will be
automatically
overlayed

P4.3-486

SnT 2023

cTBT CHN ¥ COMFER E

HOFBURG PRLACE - Uienna and Online Results
19 10 23 JUNE

Knowing that this work would require huge amounts of experimentation and FPv10.4-CTBTO .
iteration, it was deemed essential to extract the allparticles loop into a Ve N .
simpler, fast-executing standalone test program, initialised by a dump of allparticles() P

A \) aliparticles()
intermediate values from a full Flexpart run. input data J control

2 __J output data

The application of OpenACC directives — just to get it to compile and
execute — has been quite complicated and tedious, requiring many TN

directives, and the creation of a spreadsheet to maintain an inventory of all :{_"
200+ global module variables referenced in the underlying code. _H_J Test case

input data | output OBJECTIVES

Test case —
Current status is that compilation (with the discovery of another nvfortran : data
compiler bug) and execution of the full particles loop has been : (verify

accomplished. It's doubtful that computations are correct or efficient, and) same as
this is what needs to be explored next. N / control)

ESULTS
int 1_all.foe: $ACC ti
interpol_all nests. f39:1$ACC routine seq CONCLUSION

interpol_misslev.f30:!$ACC routine seq
interpol_misslev_nests.f90:!$ACC routine seq 3
grep ACC *. 90 interpol_mod. f98: !$ACC declare create(uprof,vprof,wprof) FlexpartVariables # o & 0 OE - & share
—{ bt ron: 13nce. routine seq Com,m:-FSB"$:E§ :Ectare create (hmixn) 1ntg:p?1_"-|ﬂd_Fi sacc d:ﬂi_,.-g o File Edit View Insert Format Data Todls Extensions Help
adva - e . com_mod . eclare ecreate(tropopause| create(usigprof,vsigprof,wsigpro . _ N _ _
advg CmaPf_mod.f90:I$ACC routine| .. "poy ACC declare :reateéi‘r‘eép'uﬁﬁ)' y interpol,mE:.FBB Si}zc declafe create(rhoprof,rhogradprof) o ¢ & F wow-|s % L 8w veful. - [-[m]+|B 75 AXE E-it-p-4- o0 @Y-5 m- =
adva €WAPf_mod.fo8: :'SACC routine | con mod. I$ACC declare create(yresoln) interpol_mod. $ACC declare create(u,v,w) Meckde
adva :mapf_mod.ﬁ?: £ (L2l com_mod . I$ACC declare create(xln) interpol_mod. $ACC declare create(usig,vsig,wsig) “ ° -
adyg €om-mod.fS0:1SACC declare cff ooy, I$ACC declare create(xrn) interpol_mod. $ACC declare create(pl, p2, p3, p4) E o ! . !
adya com_mod.f50: Es'“cc declare cf o n"nod. 1$ACC declare create(yln) interpol_mod. SACC declare create(ddx,ddy)
| LB R CLAEID @ com_mod . {$ACC declare create(yrn) interpol_mod. $ACC declare create(rddx,rddy) acn
advy com-mod.fS0:ISACC declare cff (o gy, ACC declare create(xglobal) | interpol_mod. $ACC declare create(dtt,dtl,dt2)
adya com_mod.fS50:! declare € con g, ACC declare create(nglobal) | interpel_mod. $ACC declare create(ix)
adye COM_mod.f30:! declare com_mod . ACC declare create(sglobal) interpol_med. $ACC declare create(jy) 8 |interpol_mod | dete
advg Com-med. 90 declare cn on nog. ACC declare create(switchnort| interpol_mod. $ACC declare create(ixp) orpol_mad oy
adyd com_mod.fS0 declare € con g, ACC declare create(switchsout| interpel_mod. $ACC declare create(jyp) erpel_mod | depindicsior
adye COm_mod.fs30 declare com_mod . ACC declare ereate(seuthpolem| interpol_mod. $ACC declare create(ngrid) e]
adye com-mod.fs0: declare € 0 ned. ACC declare ereate(DRYDEPSPEC| interpol_mod. $ACC declare create(indz) 9| interpol_mad
adygy com-mod.fs0:! declare € con"mod. ACC declare create(DRYDEF) interpol_mod. SACC declare create(indzp) 151 imerpe mac
advg Ccom-mod.fo0: ;SACC declare €n on mog. ACC declare create(rannumb) interpol_mod. $ACC declare create(depoindicator) | (erped, most
adyg COM.mod.fI8:ISACC declare cff (\n moq, ACC declare ereate(nan_count)| interpol_mod. $ACC declare create(indzindicator) - m:mz x
adyg com_mod.f9e: Es"‘cc declare € con"mod. ACC declare create(nan_count2| interpol_vdep.f98:!$ACC routine seq ""”"d - Please do
adya COM-mod.f38:13ACC declare c get_settling.foe:!$ACC routine seq interpol_vdep_nests.f98: |$ACC routine seq ::\::na moa i
adva COM-mod.f90:!3ACC declare cff .y £90:14ACC routine seq interpol_wind.f9@: !$ACC routine seq - ‘w:ﬂ s not use this
adyd com_mod.foe: Esncc declare c hanna.f98:!$ACC routine seq interpol_wind_nests.f90: !SACC routine seq 196 | interpet_med space, a QR
adya Com-mod.f30: ;SACC declare cf yanna_mod. f96: I$ACC declare create (h) interpol_wind_short.f98: !$ACC routine seq 190 | interpel_med b Ni
adval Ez:—:::':zgf .::EE :::{:: : hanna_mod . f30: | $ACC declare create (ol) interpol_wind_short_nests.f98:!$ACC routine seq 190 | interpet_med Code WI" be
adva = . . hanna_mod. f38: | $ACC declare create (sigu,si| par_mod.f98:!$ACC declare create(turbmesoscale) TR ——— F
adva Com-mod.f90:!3ACC declare < o uod. f96: SACC declare create (zesa} “| par_med.fon:!$ACC declare ereate(d_trop,d_strat) m!,:d mod automaticall
adye COm_mod. declare € ponna mod. f90: |SACC declare creats (dsigwdz| point_mod.f88:!$ACC declare create(xmass) 55 | mterpel_mod - e oy) . y overlayed
adyg com_med. declare € pannamod. f98: 1$ACC declare create (tlw) randem_mod.f90: 1SACC declare create(randem_global inext) # | interpol_mod .
advy o LA hanna_mod. f30: ! $ACC declare create (dsigw2d| randem_mod.foo:!SACC declare create(random_global_inextp) 5 | interpel_moa e _ee 1 shor,res
adva Ak Bl CLSLAT o hanna_mod. f90: | $ACC declare create (ust,wst| random_mod.f98:!$ACC declare create(random_global_ma) 9 |interpol_mod | thogradprot v
allg zz:-zgg i :zﬂ::: ©1 hanna_mod. 39: ! SACC declare create (tlu,tly| random_med.f90:!SACC routine seq) 7T imerpl_mod | magrst e X n About 200 variables!
atig mmimod. dociars o hanna_short.f90:!$ACC routine seq Fg_1n1¥1al1ze_}laaru:le.F?u:!sACc routine seq ‘: \1:=rv:_x u | saarer ' ’ - R P4 486
_mod. f9@: ! 3 nter ur . — P v -
com_mod. f50: | $ACC declare crearerrmmmomesT DU BILES CamSEs B - o " o = = —
T + = aliparticles() module variables ~ [+ T

SnT 2023

HOFBURG PALACE - Uenna and Oriine Conclusions . ‘ &.‘l "
19 10 23 JUNE L&

..., Ut ".{/I A

We knew this was going to be difficult for many reasons, and we knew that even upon completion, Amdahl’s
Law would significantly limit overall speedups that could be obtained.

Example of Amdahl’'s Law as applied to a typical, complex legacy code

300 seconds 300 seconds 300 seconds

Seral code [Targefed for parallelisation Serial code "> 900 seconds total

Make an extremely optimistic assumption INTRODUCTION

that we can attain 300 times speedup
0BJECTIVES
METHODS/DATA

RESULTS
However, given the popularity of Flexpart and its long legacy for 25 years, and its complexity, we see it as an
opportunity to explore and report on — for better and worse — issues related to parallelisation in general, and

GPU-isation specifically

1s

300 seconds 300 seconds

Serial code >I::>| Serial code > 601 seconds total

D
)

This continues to be a work in progress. Upcoming activities include

* Evaluate — and revise current test code where necessary — the correctness of outputs and the

performance of the new code Please do ot
* Time permitting, experiment with cleaner allparticles loops, where iterations are truly independent e
(requires immense code refactoring) ekt

* Apply what we have learned to the evolving Flexpart 11 in order to assess the value of continued

efforts in this area

