

The 2022 Hunga Volcano Eruption from the Multi-Technological Perspective of CTBT Monitoring

S. Donner^{*}, A. Steinberg^{*}, J. Lehr^{*}, C. Pilger^{*}, P. Hupe^{*}, P. Gaebler^{*}, O. Ross^{*}, E.P.S. Eibl[#], S. Heimann[#], T. Plenefisch^{*}, D. Rebscher^{*}, L. Ceranna^{*}

*Federal Institute für Geosciences and Natural Resources (BGR) #Institute for Geosciences, University of Potsdam

OES-17 satellite, NOAA

21.06.2023

SnT 2023 CTBT: SCIENCE AND TECHNOLOGY CONFERENCE HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE B4.3 – Federal Seismological Survey, CTBT (German NDC)

01.4-085

Monitoring compliance with the CTBT

BGR: National Data Center for the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

- Access to all data of the International Monitoring System (IMS)
- CTBT-IMS: detect any explosion of 1 kt TNT equivalent
- A HT-HH eruption: natural event with global imprints
- Use the capability of the CTBT-IMS for a **multi-technology event analysis**

Pressure waves in atmosphere, ocean and solid Earth

Perfect **benchmark data set** for evaluating IMS data and routines!

What happened between 4 and 6 am UTC on January 15th?

BGR

Seismic source time functions assuming different source types

distinct events with transient seismic signals at 04:01, 04:15, 04:18 UTC

First arrivals of the Hunga event at GRSN stations in Germany

Seismological moment tensor analysis

- Inversion between 1° and 93° with Pyrocko-Grond + 1D AK135
- Inversion for time, depth, duration and MT components •
- **Pre-event** and **first event** are mostly • explosive with tensile crack opening

Bathymetry

Apparently no significant damage to crater walls indicates purely vertical acting forces!

> Source: ABC News Online; Seabrook et al.

Seismological moment tensor analysis – IMS versus FDSN

Stacking of all three waveform technologies

What happened between 4 and 6 am UTC on January 15th?

BGR

Seismic source time functions assuming different source types

distinct events with transient seismic signals at 04:01, 04:15, 04:18 UTC

Yield estimation from seismic body waves

classic CTBT approach: determine body-wave magnitude $m_b \ \rightarrow \ m_b$ – yield relations

Gaebler et al., 2019

General problem:

- magnitude scales developed for tectonic earthquakes (shear source instead of explosion)
- derived from hard-rock onland data
- magnitude-yield relation depends on several factors **Solution** (partly): yield estimation based on IS and HA data

Tonga specific problem:

- almost no P-wave energy \rightarrow no body wave magnitude
- neither a tectonic earthquake, nor a classic explosion
- neither onshore, nor offshore
 - \rightarrow energy leaking into different medium

We need models of interaction and coupling of energy in all three media: Earth, water, atmosphere.

We need more specific magnitude-yield relations for all three media.

Yield estimation – IS Lamb wave amplitude comparison

Estimation of Lamb wave

- **Global detectability** (Krakatau: 4+ global circumnavigations)
- **Amplitude** (only Krakatau is comparable since instrumental records)
- **Yield** (using Lamb-wave amplitudes, *Pierce and Posey, 1971*)
 - 🛆 Mt. St Helens 35 MT
 - Tsar-bomb 57 MT
 - 🔺 Krakatau 100-150 MT
 - Hunga (estimate from *Vergoz et al., 2022*):
 100-200 MT

Hundred(s) of Megatons - Krakatau (1883) & Hunga (2022) Megatons - Tunguska (1908) & St Helens (1980) Kilotons - Chelyabinsk (2013) & Beirut (2020)

Matoza et al., 2022 Science paper + BGR contribution

Atmospheric sensitivity to the HT-HH region

RN26, Fidji Sample: 18 Jan 2022, 01:00 UTC + 24h source time: 15 Jan 2022, 06:00-09:00 UTC

BGR

Atmospheric transport models simulate dispersion to assess potentially affected stations or source regions.

- no CTBT-relevant isotope was measured at RN26
- no significant elevation of natural radioactive isotopes detected at RN26
- activity release of >10⁹ Bq would have been detectable, well above detection threshold

Typical: 1 kt TNT $\rightarrow 10^{14}$ Bq

HYSPLIT (NOAA-ARL), 0.5° sensitivity grid Meteorology: NCEP-GDAS 1°, 3-hourly

Publications

Geophysical Journal International

Geophys. J. Int. (2023) 235, 48–73 Advance Access publication 2023 May 18 GJI Heat Flow and Volcanology https://doi.org/10.1093/gji/ggad204

EARTH & PLANETAR

The January 2022 Hunga Volcano explosive eruption from the multitechnological perspective of CTBT monitoring

S. Donner,¹ A. Steinberg⁰,¹ J. Lehr,¹ C. Pilger,¹ P. Hupe⁰,¹ P. Gaebler,¹ J.O. Ross,¹ E.P.S. Eibl,² S. Heimann,² D. Rebscher,¹ T. Plenefisch¹ and L. Ceranna¹

¹Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany. E-mail: stefanie.donner@bgr.de
²Institute for Geosciences, University of Potsdam, 14469 Potsdam, Germany

Earth and Planetary Science Letters 591 (2022) 117639 Contents lists available at ScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

Frontiers paper

IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis

J. Vergoz^{a,*}, P. Hupe^b, C. Listowski^a, A. Le Pichon^a, M.A. Garcés^c, E. Marchetti^d, P. Labazuy^e, L. Ceranna^b, C. Pilger^b, P. Gaebler^b, S.P. Näsholm^{f,g}, Q. Brissaud^f, P. Poli^h, N. Shapiro^h, R. De Negriⁱ, P. Mialle^j

BGR

RESEARCH

REPORT

VOLCANOLOGY

Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga

Robin S. Matoza¹*, David Fee², Jelle D. Assink³, Alexandra M. lezzi¹, David N. Green⁴, Keehoon Kim⁵, Liam Toney², Thomas Lecocq⁶, Siddharth Krishnamoorthy⁷, Jean-Marie Lalande⁸, Kiwamu Nishida⁹, Kent L. Gee¹⁰, Matthew M. Haney¹¹, Hugo D. Ortiz¹, Ouentin Brissaud¹², Léo Martire⁷, Lucie Rolland¹³, Panagiotis Vergados⁷, Alexandra Nippress⁴, Junghyun Park¹⁴, Shahar Shani-Kadmiel³, Alex Witsil², Stephen Arrowsmith¹⁴, Corentin Caudron¹⁵, Shingo Watada⁹, Anna B. Perttu^{16,17}, Benoit Taisne^{16,18}, Pierrick Mialle¹⁹, Alexis Le Pichon²⁰, Julien Vergoz²⁰, Patrick Hupe²¹, Philip S. Blom²², Roger Waxler²³, Silvio De Angelis²⁴, Jonathan B. Snively²⁵, Adam T. Ringler²⁶, Robert E. Anthony²⁶ Arthur D. Jolly²⁷, Geoff Kilgour²⁸, Gil Averbuch¹⁴, Maurizio Ripepe²⁹, Mie Ichihara⁹, Alejandra Arciniega-Ceballos³⁰, Elvira Astafyeva³¹, Lars Ceranna²¹, Sandrine Cevuard³², II-Young Che³³, Rodrigo De Negri¹, Carl W. Ebeling³⁴, Läslo G. Evers³, Luis E. Franco-Marin³⁵, Thomas B. Gabrielson³⁶. Katrin Hafner³⁷. R. Giles Harrison³⁸. Attila Komiathy⁷. Giorgio Lacanna²⁹. John Lyons¹¹, Kenneth A. Macpherson², Emanuele Marchetti²⁹, Kathleen F. McKee³⁹, Robert J. Mellors³⁴, Gerardo Mendo-Pérez⁴⁰, T. Dylan Mikesell⁴¹, Edhah Munaibari¹³, Mayra Oyola-Merced⁷, Iseul Park³³, Christoph Pilger²¹, Cristina Ramos⁴², Mario C. Ruiz⁴², Roberto Sabatini²⁵, Hans F, Schwaiger¹¹, Dorianne Tailpied¹⁶, Carrick Talmadge²³, Jérôme Vidot⁸, Jeremy Webster²², David C. Wilson²⁶

14